Analytical and Bioanalytical Chemistry

, Volume 389, Issue 7–8, pp 2265–2275 | Cite as

PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases

  • Ke Huang
  • Xinxin Han
  • Xiaotong Zhang
  • Daniel W. Armstrong
Original Paper


It is known that room-temperature ionic liquids (RTILs) have wide applicability in many scientific and technological fields. In this work, a series of three new dicationic room-temperature ionic liquids functionalized with poly(ethylene glycol) (PEG) linkages were synthesized and characterized via a linear solvation model. The application of these ILs as new GC stationary phases was studied. The efficient separation of several mixtures containing compounds of different polarities and 24 components of a flavor and fragrance mixture indicated comparable or higher resolving power for the new IL stationary phases compared to the commercial polysiloxane and poly(ethylene glycol)-based stationary phases. In addition, the selectivities of the IL stationary phases could be quite unique. The separation of a homologous alkane and alcohol mixture displayed the “dual nature” of these ionic liquids as GC stationary phases. The thermal stability study showed the column robustness up to 350 °C. The high separation power, unique selectivity, high efficiency and high thermal stability of the new dicationic ionic liquids indicate that they may be applicable as a new type of robust GC stationary phase.


PEG Geminal dicationic RTIL Gas chromatography Orthogonal stationary phase Thermal stability 


  1. 1.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefGoogle Scholar
  2. 2.
    Ding J, Desikan V, Han X, Xiao TL, Ding R, Jenks WS, Armstrong DW (2005) Org Lett 7:335–337CrossRefGoogle Scholar
  3. 3.
    Seddon KR (1997) J Chem Technol Biotechnol 68:351–356CrossRefGoogle Scholar
  4. 4.
    Wikes JS (2004) J Mol Catal A: Chem 51:251–284Google Scholar
  5. 5.
    Cole AC, Jensen JL, Ntai I, Tran KR, Weaver KJ, Forbes DC, Davis JH (2002) J Am Chem Soc 124:5962–5963CrossRefGoogle Scholar
  6. 6.
    Handy ST, Okello M (2005) J Org Chem 70:2874–2877CrossRefGoogle Scholar
  7. 7.
    Khosropour AR, Khodaei MM, Beygzadeh M, Jokar M (2005) Heterocycles 65:767–773Google Scholar
  8. 8.
    Han X, Armstrong DW (2005) Org Lett 19:4205–4208CrossRefGoogle Scholar
  9. 9.
    Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Green Chem 4:147–151CrossRefGoogle Scholar
  10. 10.
    Scheeren C, Machado G, Dupont J, Fichtner P, Texeira S (2003) Inorg Chem 42:4738–4742CrossRefGoogle Scholar
  11. 11.
    Dyson PJ (2002) Appl Organomet Chem 16:495–500CrossRefGoogle Scholar
  12. 12.
    Dyson PJ, Grossel MC, Srinivasan N, Vine T, Welton T, Williams DJ, White AJP, Zigras T (1997) J Am Chem Soc, Dalton Trans Inorg Chem 19:3465–3469CrossRefGoogle Scholar
  13. 13.
    Carda-Broch S, Berthod A, Armstrong DW (2003) Anal Bioanal Chem 375:191–199Google Scholar
  14. 14.
    Dai S, Ju YH, Barnes CE (1999) J Chem Soc, Dalton Trans 8:1201–1202CrossRefGoogle Scholar
  15. 15.
    Chun S, Dzyuba SV, Bartsch RA (2001) Anal Chem 73:3737–3741CrossRefGoogle Scholar
  16. 16.
    Li C, Xin B, Xu W, Zhang Q (2007) J Chem Tech Biotech 82:196–204CrossRefGoogle Scholar
  17. 17.
    Germani R, Mancini M, Savelli G, Spreti N (2007) Tetrahedron Lett 48:1767–1769CrossRefGoogle Scholar
  18. 18.
    Dickinson EV, Williams ME, Hendrickson SM, Masui H, Murray RW (1999) J Am Chem Soc 121:613–616CrossRefGoogle Scholar
  19. 19.
    Lagrost C, Carrie D, Vaultier M, Hapiot P (2003) J Phys Chem A 107:745–752CrossRefGoogle Scholar
  20. 20.
    Ue M, Takeda M (2002) J Korean Electrochem Soc 5:192–196Google Scholar
  21. 21.
    Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG (2007) J Power Sources 163:1105–1109CrossRefGoogle Scholar
  22. 22.
    Doyle KP, Lang CM, Kim K, Kohl PA (2006) J Electrochem Soc 153:A1353–1357CrossRefGoogle Scholar
  23. 23.
    Xia Y, Wu H, Zhang Y, Fang Y, Sun S, Shi Y (2006) Huaxue Jinzhan 18:1660–1667Google Scholar
  24. 24.
    Naik PU, Nara SJ, Harjani JR, Salunkhe MM (2007) J Mol Catal B 44:93–98CrossRefGoogle Scholar
  25. 25.
    Rumbau V, Marcilla R, Ochoteco E, Pomposo JA, Mecerreyes D (2006) Macromolecules 39:8547–8549CrossRefGoogle Scholar
  26. 26.
    Paljevac M, Habulin M, Knez Z (2006) Chem Ind Chem Eng Quarterly 12:181–186CrossRefGoogle Scholar
  27. 27.
    Armstrong DW, Zhang LK, He L, Gross ML (2001) Anal Chem 73:3679–3686CrossRefGoogle Scholar
  28. 28.
    Carda-Broch S, Berthod A, Armstrong DW (2003) Rapid Commun Mass Spectrom 17:553–560CrossRefGoogle Scholar
  29. 29.
    Laremore TN, Zhang F, Linhardt R (2007) Anal Chem 79:1604–1610CrossRefGoogle Scholar
  30. 30.
    Tholey A, Heinzle E (2006) Anal Bioanal Chem 386:24–37CrossRefGoogle Scholar
  31. 31.
    Ding J, Welton T, Armstrong DW (2004) Anal Chem 76:6819–6822CrossRefGoogle Scholar
  32. 32.
    Yuan LM, Han Y, Zhou Y, Meng X, Li ZY, Zi M, Chang YX (2006) Anal Lett 39:1439–1449CrossRefGoogle Scholar
  33. 33.
    Tran CD, Oliveira D, Yu S (2006) Anal Chem 78:1349–1356CrossRefGoogle Scholar
  34. 34.
    Jimenez A, Bermudez M (2007) Tribology Lett 26:53–60CrossRefGoogle Scholar
  35. 35.
    Xia Y, Sasaki S, Murakami T, Nakano M, Shi L, Wang H (2007) Wear 262:765–771CrossRefGoogle Scholar
  36. 36.
    Armstrong DW, He L, Liu LS (1999) Anal Chem 71:3873–3876CrossRefGoogle Scholar
  37. 37.
    Berthod A, He L, Armstrong DW (2001) Chromatographia 53:63–68CrossRefGoogle Scholar
  38. 38.
    Anderson JL, Ding J, Welton T, Armstrong DW (2002) J Am Chem Soc 124:14247–14254CrossRefGoogle Scholar
  39. 39.
    Anderson JL, Armstrong DW (2005) Anal Chem 77:6453–6462CrossRefGoogle Scholar
  40. 40.
    Anderson JL, Armstrong DW (2003) Anal Chem 75:4851–4858CrossRefGoogle Scholar
  41. 41.
    Anderson JL, Ding R, Ellern A, Armstrong DW (2005) J Am Chem Soc 127:593–604CrossRefGoogle Scholar
  42. 42.
    Sumartschenkowa IA, Verevkin SP, Vasiltsova TV, Bich E, Heintz A, Shevelyava MP, Kabo GJ (2006) J Chem Eng Data 51:2138–2144CrossRefGoogle Scholar
  43. 43.
    Heintz A, Verevkin SP, Ondo DJ (2006) Chem Eng Data 51:434–437CrossRefGoogle Scholar
  44. 44.
    Heintz A, Verevkin SP (2005) J Chem Eng Data 50:1515–1519CrossRefGoogle Scholar
  45. 45.
    Reichardt C (1965) Angew Chem Int Ed Engl 4:29–40CrossRefGoogle Scholar
  46. 46.
    Carmichael AJ, Seddon KR (2000) J Phys Org Chem 13:591–595CrossRefGoogle Scholar
  47. 47.
    Lu H, Rutan SC (1996) Anal Chem 68:1387–1393CrossRefGoogle Scholar
  48. 48.
    Petsch M, Mayer-Helm BX, Soellner V (2005) Anal Bioanal Chem 383:322–326CrossRefGoogle Scholar
  49. 49.
    Berthod A, Zhou EY, Le K, Armstrong DW (1995) Anal Chem 67:849–857CrossRefGoogle Scholar
  50. 50.
    Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194CrossRefGoogle Scholar
  51. 51.
    Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–47CrossRefGoogle Scholar
  52. 52.
    Kamlet MJ, Carr PW, Taft RW, Abraham MH (1981) J Am Chem Soc 103:6062–6066CrossRefGoogle Scholar
  53. 53.
    Abraham MH, Whiting GS, Andonian-Haftvan J, Steed JW (1991) J Chromatogr 588:361–364CrossRefGoogle Scholar
  54. 54.
    Abraham MH (1993) Chem Soc Rev 22:73–83CrossRefGoogle Scholar
  55. 55.
    Jin C, Ye C, Phillips BS, Zabinski JS, Liu X, Liu W, Shreeve JM (2006) J Mater Chem 16:1529–1535CrossRefGoogle Scholar
  56. 56.
    Poole SK (1995) J Chromatogr A 697:415–427CrossRefGoogle Scholar
  57. 57.
    Maria Santiuste J (1998) Anal Chim Acta 377:71–83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ke Huang
    • 1
  • Xinxin Han
    • 1
  • Xiaotong Zhang
    • 1
  • Daniel W. Armstrong
    • 1
  1. 1.Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations