Advertisement

Analytical and Bioanalytical Chemistry

, Volume 389, Issue 6, pp 1697–1714 | Cite as

Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection

  • Paula Payá
  • Michelangelo Anastassiades
  • Dorothea Mack
  • Irina Sigalova
  • Bünyamin Tasdelen
  • José Oliva
  • Alberto Barba
Original Paper

Abstract

The Quick Easy Cheap Effective Rugged and Safe multiresidue method (QuEChERS) has been validated for the extraction of 80 pesticides belonging to various chemical classes from various types of representative commodities with low lipid contents. A mixture of 38 pesticides amenable to gas chromatography (GC) were quantitatively recovered from spiked lemon, raisins, wheat flour and cucumber, and determined using gas chromatography–tandem mass spectrometry (GC–MS/MS). An additional mixture of 42 pesticides were recovered from oranges, red wine, red grapes, raisins and wheat flour, using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for determination. The pesticides chosen for this study included many of the most frequently detected ones and/or those that are most often found to violate the maximum residue limit (MRL) in food samples, some compounds that have only recently been introduced, as well as a few other miscellaneous compounds. The method employed involved initial extraction in a water/acetonitrile system, an extraction/partitioning step after the addition of salt, and a cleanup step utilizing dispersive solid-phase extraction (D-SPE); this combination ensured that it was a rapid, simple and cost-effective procedure. The spiking levels for the recovery experiments were 0.005, 0.01, 0.02 and 0.2 mg kg−1 for GC–MS/MS analyses, and 0.01 and 0.1 mg kg−1 for LC–MS/MS analyses. Adequate pesticide quantification and identity confirmation were attained, even at the lowest concentration levels, considering the high signal-to-noise ratios, the very good accuracies and precisions, as well as the good matches between the observed ion ratios. Mean recoveries mostly ranged between 70 and 110% (98% on average), and relative standard deviations (RSD) were generally below 10% (4.3% on average). The use of analyte protectants during GC analysis was demonstrated to provide a good alternative to the use of matrix-matched standards to minimize matrix-effect-related errors. Based on these results, the methodology has been proven to be highly efficient and robust and thus suitable for monitoring the MRL compliance of a wide range of commodity/pesticide combinations.

Figure

QuEChERS for fruits and vegetables

Keywords

QuEChERS Pesticides GC–MS/MS LC–MS/MS Analyte protectants Fruits and vegetables Matrix effects Wine 

Notes

Acknowledgments

We would like to express our thanks to Hubert Zipper, Ulrike Wrany and Rebekka Haisch from the Chemisches- und Veterinäruntersuchungsamt Stuttgart for their cooperation in this project.

Special thanks are also expressed to Fundación Séneca Research Grants 2006, for financing the two-month stay of Paula Payá at the Chemisches und Veterinäruntersuchungsamt Stuttgart.

References

  1. 1.
    Atkinson D, Burnett F, Foster GN, Litterick A, Mullay M, Watson CA (2003) The minimisation of pesticide residues in food: a review of the published literature. Food Standards Agency, LondonGoogle Scholar
  2. 2.
    Groenewegen P, Reijnen EM, Goverse T (1997) Eur Environ 7:126–132CrossRefGoogle Scholar
  3. 3.
    Directorate-General for Press and Communication (2004) From farm to fork: Safe food for Europe’s consumers. European Commission, BrusselsGoogle Scholar
  4. 4.
    Balsevich F, Berdegué JA, Flores L, Mainville D, Reardon T (2003) Am J Agr Econ 85(5):1147–1154Google Scholar
  5. 5.
    QS Qualität und Sicherheit GmbH (2007) QS system webpage. http://www.q-s.info. Cited 11 September 2007
  6. 6.
    GLOBALGAP (2007) GLOBALGAP welcome webpage. http://www.eurepgap.org. Cited 11 September 2007
  7. 7.
    European Commission (1999) Commission Directive 1999/39/EC of 6 May 1999 amending Directive 96/5/EC on processed cereal-based foods and baby foods for infants and young children. European Commission, BrusselsGoogle Scholar
  8. 8.
    European Commission (1999) Commission Directive 1999/50/EC of 25 May 1999 amending Directive 91/321/EEC on infant formulae and follow-on formulae. European Commission, BrusselsGoogle Scholar
  9. 9.
    European Commission (2003) Commission Directive 2003/13/EC of 6 May 1999 amending Directive 96/5/EC on processed cereal-based foods and baby foods for infants and young children. European Commission, BrusselsGoogle Scholar
  10. 10.
    European Commission (2003) Commission Directive 2003/14/EC of 25 May 1999 amending Directive 91/321/EEC on infant formulae and follow-on formulae. European Commission, BrusselsGoogle Scholar
  11. 11.
    Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) J AOAC Int 86:412–431Google Scholar
  12. 12.
    CVUA Stuttgart (2007) Pesticides Online website. http://www.pesticides-online.com. Cited 11 September 2007
  13. 13.
    Anastassiades M, Tasdelen B, Scherbaum E, Stajnbaher D (2007) Recent developments in QuEChERS methodology for pesticide multiresidue analysis. In: Ohkawa H, Miyagawa H, Lee PW (eds) Pesticide chemistry: Crop protection, public health, environmental safety. Wiley-VCH, WeinheimGoogle Scholar
  14. 14.
    European Committee for Standardization/Technical Committee 275 (Standards under development) (2007) Foods of plant origin: Determination of pesticide residues using GC–MS and/or LC–MS(/MS) following acetonitrile extraction/partitioning and cleanup by dispersive SPE–QuEChERS method. European Committee for Standardization, BrusselsGoogle Scholar
  15. 15.
    Lehotay SJ, deKok A, Hiemstra M, van Bodengraven P (2005) J AOAC Int 88(2):595–614Google Scholar
  16. 16.
    Schenck FJ, Hobbs JE (2004) Bull Environ Contam Toxicol 73(1):24–30CrossRefGoogle Scholar
  17. 17.
    Diez C, Traag WA, Zommer P, Marinero P, Atienza J (2006) J Chromatogr A 1131(1–2):11–23CrossRefGoogle Scholar
  18. 18.
    Looser N, Kostelac D, Scherbaum E, Anastassiades M, Zipper H (2006) J Verbr Lebensm 1(2):135–141Google Scholar
  19. 19.
    Lehotay SJ, Mastovska K, Jun SJ (2005) J AOAC Int 88(2):630–638Google Scholar
  20. 20.
    Lehotay SJ, Mastovska K, Lightfield AR (2005) J AOAC Int 88(2):615–629Google Scholar
  21. 21.
    Stenerson K, Wolford R, Shimelis O (2006) The Reporter 24(3):3–5Google Scholar
  22. 22.
    Barakt A, Ashour H, Attallah E, Maatook G (2007) J Food Agric Environm 5(2):97–100Google Scholar
  23. 23.
    Hancock P, Dunstan J, Wauschkuhn C, Fügel D, Anastassiades M (2005) Waters Application Note 72001439EN. Waters, Milford, MAGoogle Scholar
  24. 24.
    Hancock P (2006) Waters Application Note 720001607EN. Waters, Milford, MAGoogle Scholar
  25. 25.
    Okihashi M, Kitagawa Y, Akutsu K, Obana H, Tanaka Y (2005) J Pest Sci 30(4):368–377CrossRefGoogle Scholar
  26. 26.
    Hercegova A, Domotorova M, Kruzlicova D, Matisova E (2006) J Sep Sci 29(8):1102–1109CrossRefGoogle Scholar
  27. 27.
    Martínez-Vidal JL, Arrebola FJ, González MJ, Garrido A, Fernandez JL (2006) Rapid Commun Mass Spectrom 20(3):365–375CrossRefGoogle Scholar
  28. 28.
    Jansson C, Pihlstrom T, Osterdahl BG, Markides KE (2004) J Chromatogr A 1023(1):93–104CrossRefGoogle Scholar
  29. 29.
    Pihlstrom T, Blomkvist G, Friman P, Pagard U, Osterdahl BG (2007) Anal Bioanal Chem ISSN 1618–2642Google Scholar
  30. 30.
    Hetherton CL, Sykes MD, Fussell RJ, Goodall DM (2004) Rapid Commun Mass Spectrom 18(20):2443–2450CrossRefGoogle Scholar
  31. 31.
    Hiemstra M, de Kok A (2007) J Chromatogr A 1154(1–2):3–25CrossRefGoogle Scholar
  32. 32.
    Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Li XM, Li ZY, Wu YP, Guo TT (2006) J AOAC Int 89(3):740–771Google Scholar
  33. 33.
    Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Fu BL, Li XM, Li ZY, Wu YP (2006) Food Addit Contam 23(8):777–810CrossRefGoogle Scholar
  34. 34.
    Garrido Frenich A, Martinez Salvador I, Martinez Vidal JL, Lopez-Lopez T (2005) Anal Bioanal Chem 383(7–8):1106–1118CrossRefGoogle Scholar
  35. 35.
    Wang S, Xu Y, Pan C, Jiang S, Liu F (2007) Anal Bioanal Chem 387(2):673–685CrossRefGoogle Scholar
  36. 36.
    Hernandez F, Pozo OJ, Sancho JV, Bijlsma L, Barreda M, Pitarch E (2006) J Chromatogr A 1109(2):242–252CrossRefGoogle Scholar
  37. 37.
    Klein J, Alder L (2003) J AOAC Int 86(5):1015–1037Google Scholar
  38. 38.
    Alder L, Greulich K, Kempe G, Vieth B (2006) Mass Spectrom Rev 25(6):838–865CrossRefGoogle Scholar
  39. 39.
    Committee on Conformity Assessment (CASCO) (2005) UNE-EN ISO/IEC 17025:2005: General requirements for the competence of testing and calibration laboratories. International Organization for Standardization (ISO), GenevaGoogle Scholar
  40. 40.
    Health & Consumer Protection Directorate-General (2006) Quality control procedures for pesticide residue analysis, document No SANCO/10232/2006. European Commission, BrusselsGoogle Scholar
  41. 41.
    Ambrus A (1999) In: Roberts TR (ed) Pesticide chemistry and bioscience, the food-environment challenge. The Royal Society of Chemistry, CambridgeGoogle Scholar
  42. 42.
    Fussell RJ, Jackson K, Reynolds SL, Wilson MF (2002) J Agric Food Chem 50:441–448CrossRefGoogle Scholar
  43. 43.
    El Bidaoui M, Jarju OP, Maestroni B, Phakaiew Y, Ambrus A (2000) In: Ambrus A (ed) Principles of method validation. The Royal Society of Chemistry, CambridgeGoogle Scholar
  44. 44.
    Anastassiades M, Mastovska K, Lehotay SJ (2003) J Chromatogr A 1015:163–184CrossRefGoogle Scholar
  45. 45.
    Mastovska K, Lehotay SJ, Anastassiades M (2005) Anal Chem 77(24):8129–8137Google Scholar
  46. 46.
    CVUA Stuttgart (2007) Data pool of the Community Reference Laboratories for Residues of Pesticides (online). http://www.CRL-pesticides-datapool.eu. Cited 13 September 2007

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Paula Payá
    • 1
  • Michelangelo Anastassiades
    • 2
  • Dorothea Mack
    • 2
  • Irina Sigalova
    • 2
  • Bünyamin Tasdelen
    • 2
  • José Oliva
    • 1
  • Alberto Barba
    • 1
  1. 1.Departamento Química Agrícola, Geología y Edafología, Facultad de QuímicaUniversidad de MurciaEspinardoSpain
  2. 2.Chemisches und Veterinäruntersuchungsamt StuttgartFellbachGermany

Personalised recommendations