Advertisement

Analytical and Bioanalytical Chemistry

, Volume 389, Issue 7–8, pp 2331–2342 | Cite as

Chemically driven variable selection by focused multimodal genetic algorithms in mid-IR spectra

  • M. P. Gómez-Carracedo
  • M. Gestal
  • J. Dorado
  • J. M. Andrade
Original Paper

Abstract

Four genetic-algorithm-based approaches to variable selection in spectral data sets are presented. They range from a pure black-box approach to a chemically driven one. The latter uses a fitness function that takes into account not only typical parameters like the number of errors when classifying a training set but also the chemical interpretability of the selected variables. In order to cope with the fact that multiple solutions may be acceptable, a multimodal genetic algorithm (GA) is employed and the most satisfactory solution selected. The multimodal GA uses two populations (denominated “hybrid two populations” GA or HTP-GA): a classical population, from which potential solutions emerge, and a new population, which maintains diversity in the search space (as required by multimodal problems). Results show that the HTP-GA approach improves the chemical understanding of the selected solution (compared to other GA approaches) and that the classification capabilities of the approach are still good. All of the GA strategies for variable selection were compared with a classical parametric technique, Procrustes rotation, which does not consider interpretability.

Keywords

Variable selection Genetic algorithms Procrustes rotation Neural networks 

References

  1. 1.
    Dennison BA, Rockwell HL, Baker SL (1997) Pediatrics 99:15–22Google Scholar
  2. 2.
    US Department of Health and Human Services (1990) Healthy people 2000: National health promotion and disease prevention objectives. Government Printing Office, Washington, DCGoogle Scholar
  3. 3.
    Defernez M, Kemsley EK, Wilson RH (1995) J Agric Food Chem 43:109–113CrossRefGoogle Scholar
  4. 4.
    Braakman L (2002) Food Eng Ingred 27:14–19Google Scholar
  5. 5.
    Braakman L (2003) Food Eng Ingred 28:45–47Google Scholar
  6. 6.
    Ashurst PR (1998) Chemistry and technology of soft drinks and fruit juices. Sheffield Academic Press Ltd., Sheffield, UKGoogle Scholar
  7. 7.
    Saavedra L, García A, Barbas C (2000) J Chromatography A 881:395–401CrossRefGoogle Scholar
  8. 8.
    Yuan JP, Chen F (1999) Food Chem 64:423–427CrossRefGoogle Scholar
  9. 9.
    Stöber P, Martin GG, Peppard TL (1998) Dtsch Lebensm-Rundsch 94:309–316Google Scholar
  10. 10.
    Jamin E, González J, Remaud G, Naulet N, Martin G (1997) J Agric Food Chem 45:3961–3967CrossRefGoogle Scholar
  11. 11.
    Rodriguez-Saona LE, Fry FS, McLaughlin MA, Calvey EM (2001) Carbohydr Res 336:63–74CrossRefGoogle Scholar
  12. 12.
    Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  13. 13.
    Van Est QC, Schoenmakers PJ, Smits JR, Nijssen WP (1993) Vibr Spectrosc 4:263–272CrossRefGoogle Scholar
  14. 14.
    Downey G (1998) TrAC 17:418–424Google Scholar
  15. 15.
    Gestal M, Cancela A, Andrade JM, Gómez-Carracedo MP (2006) Several approaches to variable selection by means of genetic algorithms. In: Artificial neural networks in real-life applications. Idea Group, New YorkGoogle Scholar
  16. 16.
    Lavine BK, Davidson CE, Moores AJ (2002) Chemometr Intell Lab 60:161–171CrossRefGoogle Scholar
  17. 17.
    Ramadan Z, Song XH, Hopke PK, Johnson MJ, Scow KM (2001) Anal Chim Acta 446:231–242CrossRefGoogle Scholar
  18. 18.
    Fatemi MH, Jalali-Heravi M, Konuze E (2003) Anal Chim Acta 486:101–108CrossRefGoogle Scholar
  19. 19.
    Guo Q, Wu W, Massart DL, Boucon C, de Jong S (2002) Chemometr Intell Lab 61:123–132CrossRefGoogle Scholar
  20. 20.
    Guo Q, Wu W, Massart DL, Boucon C, de Jong S (2001) Anal Chim Acta 446:85–96CrossRefGoogle Scholar
  21. 21.
    Pavan M, Consomni V, Todeschini R (2003) Development of order ranking models by genetic algorithm variable subset selection (GA-VSS). In: Conferentia Chemometrica 2003, 27–29 October 2003, Budapest, HungaryGoogle Scholar
  22. 22.
    Holland JF (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MIGoogle Scholar
  23. 23.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MAGoogle Scholar
  24. 24.
    Leardi R (2001) J Chemometr 15:559–569CrossRefGoogle Scholar
  25. 25.
    Krzanowski WJ (2001) Principles of multivariate analysis: a user’s perspective. Oxford University Press, Inc., New YorkGoogle Scholar
  26. 26.
    Ursem RK (2002) Diversity-guided evolutionary algorithms. In: Merelo JJ, Adamidis P, Beyer H-G (eds) Parallel problem solving from nature—PPSN VII. Springer, Berlin Heidelberg New York, pp 462–471Google Scholar
  27. 27.
    Deb K, Agrawal S (1995) Complex Syst 9:115–148Google Scholar
  28. 28.
    Ono I, Kita H, Kobayashi S (2003) A real-coded genetic algorithm using the unimodal normal distribution crossover. In: Advances in evolutionary computing: theory and applications. Springer, New YorkGoogle Scholar
  29. 29.
    Kimura T, Hasegawa K, Funatsu K (1998) J Chem Inf Comput Sci 38:276–282CrossRefGoogle Scholar
  30. 30.
    Rabuñal JR, Dorado J, Gestal M, Pedreira N (2005) Diversity and multimodal search with a hybrid two population GA: An application to ANN development. In: Cabestany J, Prieto A, Sandoval F (eds) Computational intelligence and bioinspired systems (8th International Work-Conference on Artificial Neural Networks, IWANN 2005). Springer, BerlinGoogle Scholar
  31. 31.
    Jouan-Rimbaud D, Massart DL, Leardi R, De Noord OE (1995) Anal Chem 67:4295–4301CrossRefGoogle Scholar
  32. 32.
    Kim JH, Jeoung D, Lee S, Kim H (2004) J Biomedical Informatics 37:260–268CrossRefGoogle Scholar
  33. 33.
    Spanish Food Code (1997) Código Alimentario Español y disposiciones complementarias, 3rd edn. Edit. Tecnos, MadridGoogle Scholar
  34. 34.
    Gómez-Carracedo MP, Andrade JM, Fernández E, Prada D, Muniategui S (2004) Spectrosc Lett 37:73–93CrossRefGoogle Scholar
  35. 35.
    Low N (1996) J AOAC Int 79:724–737Google Scholar
  36. 36.
    Lee H, Wrolstad RE (1988) J Assoc Off Anal Chem 71:789–794Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. P. Gómez-Carracedo
    • 1
  • M. Gestal
    • 2
  • J. Dorado
    • 2
  • J. M. Andrade
    • 1
  1. 1.Department of Analytical ChemistryUniversity of A CoruñaA CoruñaSpain
  2. 2.Department of Information Technologies and CommunicationUniversity of A CoruñaA CoruñaSpain

Personalised recommendations