Analytical and Bioanalytical Chemistry

, Volume 390, Issue 2, pp 591–603 | Cite as

Pitfalls in compound-specific isotope analysis of environmental samples

  • Michaela Blessing
  • Maik A. Jochmann
  • Torsten C. SchmidtEmail author


In the last decade compound-specific stable isotope analysis (CSIA) has evolved as a valuable technique in the field of environmental science, especially in contaminated site assessment. Instrumentation and methods exist for highly precise measurements of the isotopic composition of organic contaminants even in a very low concentration range. Nevertheless, the determination of precise and accurate isotope data of environmental samples can be a challenge. Since CSIA is gaining more and more popularity in the assessment of in situ biodegradation of organic contaminants, an increasing number of authorities and environmental consulting offices are interested in the application of the method for contaminated site remediation. Because of this, it is important to demonstrate the problems and limitations associated with compound-specific isotope measurements of environmental samples. In this review, potential pitfalls of the analytical procedure are critically discussed and strategies to avoid possible sources of error are provided. In order to maintain the analytical quality and to ensure the basis for reliable stable isotope data, recommendations on groundwater sampling, and sample preservation and storage are given. Important aspects of sample preparation and preconcentration techniques to improve sensitivity are highlighted. Problems related to chromatographic resolution and matrix interference are discussed that have to be considered in order to achieve accurate gas chromatography/isotope ratio mass spectrometry measurements. As a result, the need for a thorough investigation of compound-specific isotope fractionation effects introduced by any step of the overall analytical method by standards with known isotopic composition is emphasized. Finally, we address some important points that have to be considered when interpreting data from field investigations.


CSIA Principal (Carbon)


Compound-specific isotope analysis Gas chromatography/isotope ratio mass spectrometry Isotope ratio monitoring Environmental forensics Environmental analysis Hydrocarbons (halogenated/polycyclic) 



Accelerated solvent extraction


Benzene, toluene ethylbenzene and xylenes


Compound-specific isotope analysis


Gas chromatography


Isotope ratio mass spectrometry


Liquid chromatography


Large-volume injection


Moving capillary stream switching


Methyl tert-butyl ether


Polycyclic aromatic hydrocarbon


Polychlorinated biphenyl


Purge and trap


Solid-phase microextraction


Unresolved complex mixture



We would like to thank the reviewers for their helpful comments and suggestions. M.B. acknowledges financial support by the Scholarship Program of the German Federal Environmental Foundation (DBU).


  1. 1.
    Sano M, Yotsui Y, Abe H, Sasaki S (1976) Biomed Mass Spectrom 3:1–3Google Scholar
  2. 2.
    Matthews DE, Hayes JM (1978) Anal Chem 50:1465–1473Google Scholar
  3. 3.
    Barrie A, Bricout J, Koziet J (1984) Biomed Mass Spectrom 11:583–588Google Scholar
  4. 4.
    Freedman PA, Gillyon ECP, Jumeau EJ (1988) Am Lab 20:114–119Google Scholar
  5. 5.
    Hayes JM, Freeman KH, Popp BN, Hoham CH (1990) Org Geochem 16:1115–1128Google Scholar
  6. 6.
    Schoell M, McCaffrey MA, Fago FJ, Moldowan JM (1992) Geochim Cosmochim Acta 56:1391–1399Google Scholar
  7. 7.
    Ruble TE, Bakel AJ, Philp RP (1994) Org Geochem 21:661–671Google Scholar
  8. 8.
    Brand WA (1996) J Mass Spectrom 31:225–235Google Scholar
  9. 9.
    Meier-Augenstein W (1999) J Chromatogr A 842:351–371Google Scholar
  10. 10.
    Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Anal Bioanal Chem 378:283–300Google Scholar
  11. 11.
    Benson S, Lennard C, Maynard P, Roux C (2006) Forensic Sci Int 157:1–22Google Scholar
  12. 12.
    Beneteau KM, Aravena R, Frape SK (1999) Org Geochem 30:739–753Google Scholar
  13. 13.
    Shouakar-Stash O, Frape SK, Drimmie RJ (2003) J Contam Hydrol 60:211–228Google Scholar
  14. 14.
    van Warmerdam EM, Frape SK, Aravena R, Drimmie RJ, Flatt H, Cherry JA (1995) Appl Geochem 10:547–552Google Scholar
  15. 15.
    Mansuy L, Philp RP, Allen J (1997) Environ Sci Technol 31:3417–3425Google Scholar
  16. 16.
    Smirnov A, Abrajano TA, Smirnov A, Stark A (1998) Org Geochem 29:1813–1828Google Scholar
  17. 17.
    Okuda T, Kumata H, Naraoka H, Takada H (2002) Org Geochem 33:1737–1745Google Scholar
  18. 18.
    Boyd TJ, Osburn CL, Johnson KJ, Birgl KB, Coffin RB (2006) Environ Sci Technol 40:1916–1924Google Scholar
  19. 19.
    Dempster HS, Sherwood Lollar B, Feenstra S (1997) Environ Sci Technol 31:3193–3197Google Scholar
  20. 20.
    Drenzek NJ, Tarr CH, Eglinton TI, Heraty LJ, Sturchio NC, Shiner VJ, Reddy CM (2002) Org Geochem 33:437–444Google Scholar
  21. 21.
    Yanik PJ, O’Donnell TH, Macko SA, Qian Y, Kennicutt II MC (2003) Org Geochem 34:239–251Google Scholar
  22. 22.
    Smallwood BJ, Philp RP, Burgoyne TW, Allen JD (2001) Environ Forensics 2:215–221Google Scholar
  23. 23.
    Harrington RR, Poulson SR, Drever JI, Colberg PJS, Kelly EF (1999) Org Geochem 30:765–775Google Scholar
  24. 24.
    Poulson SR, Drever JI (1999) Environ Sci Technol 33:3689–3694Google Scholar
  25. 25.
    Slater GF, Dempster HS, Sherwood Lollar B, Ahad J (1999) Environ Sci Technol 33:190–194Google Scholar
  26. 26.
    Slater GF, Ahad JME, Sherwood Lollar B, Allen-King R, Sleep B (2000) Anal Chem 72:5669–5672Google Scholar
  27. 27.
    Schüth C, Taubald H, Bolano N, Maciejczyk K (2003) J Contam Hydrol 64:269–281Google Scholar
  28. 28.
    Kopinke FD, Georgi A, Voskamp M, Richnow HH (2005) Environ Sci Technol 39:6052–6062Google Scholar
  29. 29.
    Wang Y, Huang YS (2003) Appl Geochem 18:1641–1651Google Scholar
  30. 30.
    Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL (2004) J Contam Hydrol 74:265–282Google Scholar
  31. 31.
    Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kästner M, Richnow HH (2006) Environ Sci Technol 40:4245–4252Google Scholar
  32. 32.
    Hunkeler D, Andersen N, Aravena R, Bernasconi SM, Butler BJ (2001) Environ Sci Technol 35:3462–3467Google Scholar
  33. 33.
    Morasch B, Richnow HH, Schink B, Vieth A, Meckenstock RU (2002) Appl Environ Microbiol 68:5191–5194Google Scholar
  34. 34.
    Barth JAC, Slater G, Schüth C, Bill M, Downey A, Larkin M, Kalin RM (2002) Appl Environ Microbiol 68:1728–1734Google Scholar
  35. 35.
    Chu KH, Mahendra S, Song DL, Conrad ME, Alvarez-Cohen L (2004) Environ Sci Technol 38:3126–3130Google Scholar
  36. 36.
    Chartrand MMG, Waller A, Mattes TE, Elsner M, Lacrampe-Couloume G, Gossett JM, Edwards EA, Sherwood Lollar B (2005) Environ Sci Technol 39:1064–1070Google Scholar
  37. 37.
    Hunkeler D, Aravena R, Butler BJ (1999) Environ Sci Technol 33:2733–2738Google Scholar
  38. 38.
    Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W, Richnow HH (1999) Environ Microbiol 1:409–414Google Scholar
  39. 39.
    Bloom Y, Aravena R, Hunkeler D, Edwards E, Frape SK (2000) Environ Sci Technol 34:2768–2772Google Scholar
  40. 40.
    Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Sherwood Lollar B (2003) Appl Environ Microbiol 69:191–198Google Scholar
  41. 41.
    Richnow HH, Annweiler E, Michaelis W, Meckenstock RU (2003) J Contam Hydrol 65:101–120Google Scholar
  42. 42.
    Morasch B, Höhener P, Hunkeler D (2007) Environ Pollut 148:739–748Google Scholar
  43. 43.
    Dayan H, Abrajano T, Sturchio NC, Winsor L (1999) Org Geochem 30:755–763Google Scholar
  44. 44.
    Bill M, Schüth C, Barth JAC, Kalin RM (2001) Chemosphere 44:1281–1286Google Scholar
  45. 45.
    VanStone NA, Focht RM, Mabury SA, Sherwood Lollar B (2004) Ground Water 42:268–276Google Scholar
  46. 46.
    Zwank L, Elsner M, Aeberhard A, Schwarzenbach RP, Haderlein SB (2005) Environ Sci Technol 39:5634–5641Google Scholar
  47. 47.
    Hartenbach A, Hofstetter TB, Berg M, Bolotin J, Schwarzenbach RP (2006) Environ Sci Technol 40:7710–7716Google Scholar
  48. 48.
    Kelley CA, Hammer BT, Coffin RB (1997) Environ Sci Technol 31:2469–2472Google Scholar
  49. 49.
    Sherwood Lollar B, Slater GF, Sleep B, Witt M, Klecka GM, Harkness M, Spivack J (2001) Environ Sci Technol 35:261–269Google Scholar
  50. 50.
    Song DL, Conrad ME, Sorenson KS, Alvarez-Cohen L (2002) Environ Sci Technol 36:2262–2268Google Scholar
  51. 51.
    Morrill PL, Lacrampe-Couloume G, Slater GF, Sleep BE, Edwards EA, McMaster ML, Major DW, Sherwood Lollar B (2005) J Contam Hydrol 76:279–293Google Scholar
  52. 52.
    VanStone N, Przepiora A, Vogan J, Lacrampe-Couloume G, Powers B, Perez E, Mabury S, Sherwood Lollar B (2005) J Contam Hydrol 78:313–325Google Scholar
  53. 53.
    Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Environ Sci Technol 39:213–220Google Scholar
  54. 54.
    Mak KS, Griebler C, Meckenstock RU, Liedl R, Peter A (2006) J Contam Hydrol 88:306–320Google Scholar
  55. 55.
    Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Environ Sci Technol 41:3689–3696Google Scholar
  56. 56.
    Steinbach A, Seifert R, Annweiler E, Michaelis W (2004) Environ Sci Technol 38:609–616Google Scholar
  57. 57.
    Spence MJ, Bottrell SH, Thornton SF, Richnow HH, Spence KH (2005) J Contam Hydrol 79:67–88Google Scholar
  58. 58.
    McKelvie JR, Lindstrom JE, Beller HR, Richmond SA, Sherwood Lollar B (2005) J Contam Hydrol 81:167–186Google Scholar
  59. 59.
    Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) Environ Sci Technol 39:1018–1029Google Scholar
  60. 60.
    Mancini SA, Lacrampe-Couloume G, Jonker H, Van Breukelen BM, Groen J, Volkering F, Sherwood Lollar B (2002) Environ Sci Technol 36:2464–2470Google Scholar
  61. 61.
    Hirschorn SK, Dinglasan MJ, Elsner M, Mancini SA, Lacrampe-Couloume G, Edwards EA, Sherwood Lollar B (2004) Environ Sci Technol 38:4775–4781Google Scholar
  62. 62.
    Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) Environ Sci Technol 39:6896–6916Google Scholar
  63. 63.
    Hunkeler D, Aravena R, Berry-Spark K, Cox E (2005) Environ Sci Technol 39:5975–5981Google Scholar
  64. 64.
    Peter A, Steinbach A, Liedl R, Ptak T, Michaelis W, Teutsch G (2004) J Contam Hydrol 71:127–154Google Scholar
  65. 65.
    Abe Y, Hunkeler D (2006) Environ Sci Technol 40:1588–1596Google Scholar
  66. 66.
    Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) J Contam Hydrol 75:215–255Google Scholar
  67. 67.
    Eakin PA, Fallick AE, Gerk J (1992) Chem Geol 101:71–79Google Scholar
  68. 68.
    Ricci MP, Merritt DA, Freeman KH, Hayes JM (1994) Org Geochem 21:561–571Google Scholar
  69. 69.
    Merritt DA, Freeman KH, Ricci MP, Studley SA, Hayes JM (1995) Anal Chem 67:2461–2473Google Scholar
  70. 70.
    Sherwood Lollar B, Slater GF, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P (1999) Org Geochem 30:813–820Google Scholar
  71. 71.
    Slater GF (2003) Environ Forensics 4:13–23Google Scholar
  72. 72.
    Sessions AL (2006) J Sep Sci 29:1946–1961Google Scholar
  73. 73.
    Chartrand MMG, Morrill PL, Lacrampe-Couloume G, Sherwood Lollar B (2005) Environ Sci Technol 39:4848–4856Google Scholar
  74. 74.
    Blum P, Kamkar P, Melzer R (2007) Altlasten Spektrum 2:74–81Google Scholar
  75. 75.
    Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) Rapid Commun Mass Spectrom 20:3639–3648Google Scholar
  76. 76.
    McLoughlin PW, Pirkle RJ, Fine D, Wilson JT (2004) Ground Water Monit Remediat 24:57–66Google Scholar
  77. 77.
    Kovacs DA, Kampbell DH (1999) Arch Environ Contam Toxicol 36:242–247Google Scholar
  78. 78.
    Elsner M, Lacrampe-Couloume G, Sherwood Lollar B (2006) Anal Chem 78:7528–7534Google Scholar
  79. 79.
    O’Malley VP, Abrajano TA, Hellou J (1994) Org Geochem 21:809–822Google Scholar
  80. 80.
    Graham MC, Allan R, Fallick AE, Farmer JG (2006) Sci Total Environ 360:81–89Google Scholar
  81. 81.
    Baylis SA, Hall K, Jumeau EJ (1994) Org Geochem 21:777–785Google Scholar
  82. 82.
    Schmitt J, Glaser B, Zech W (2003) Rapid Commun Mass Spectrom 17:970–977Google Scholar
  83. 83.
    Hunkeler D, Butler BJ, Aravena R, Barker JF (2001) Environ Sci Technol 35:676–681Google Scholar
  84. 84.
    Gray JR, Lacrampe-Couloume G, Gandhi D, Scow KM, Wilson RD, Mackay DM, Sherwood Lollar B (2002) Environ Sci Technol 36:1931–1938Google Scholar
  85. 85.
    Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Anal Chem 75:5575–5583Google Scholar
  86. 86.
    Hunkeler D, Aravena R (2000) Environ Sci Technol 34:2839–2844Google Scholar
  87. 87.
    Wilcke W, Krauss M, Amelung W (2002) Environ Sci Technol 36:3530–3535Google Scholar
  88. 88.
    Hall JA, Barth JAC, Kalin RM (1999) Rapid Commun Mass Spectrom 13:1231–1236Google Scholar
  89. 89.
    Sherwood Lollar B, Hirschorn SK, Chartrand MMG, Lacrampe-Couloume G (2007) Anal Chem 79:3469–3475Google Scholar
  90. 90.
    van Hook WA, Emmet PH (1960) J Phys Chem 64:673–675Google Scholar
  91. 91.
    Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997) Mass Spectrom Rev 16:227–258Google Scholar
  92. 92.
    Hilkert AW, Douthitt CB, Schlüter HJ, Brand WA (1999) Rapid Commun Mass Spectrom 13:1226–1230Google Scholar
  93. 93.
    Frysinger GS, Gaines RB, Xu L, Reddy CM (2003) Environ Sci Technol 37:1653–1662Google Scholar
  94. 94.
    Sun YG, Sheng GY, Peng P, Fu JM (2000) Org Geochem 31:1349–1362Google Scholar
  95. 95.
    Dabrowski L, Giergielewicz-Mozajska H, Gorski L, Biziuk M, Namiesnik J, Janicki B (2002) J Sep Sci 25:290–296Google Scholar
  96. 96.
    Kim M, Kennicutt II MC, Qian Y (2005) Environ Sci Technol 39:6770–6776Google Scholar
  97. 97.
    Mazeas L, Budzinski H (2001) J Chromatogr A 923:165–176Google Scholar
  98. 98.
    Horii Y, Kannan K, Petrick G, Gamo T, Falandysz J, Yamashita N (2005) Environ Sci Technol 39:4206–4212Google Scholar
  99. 99.
    Teffera Y, Kusmierz JJ, Abramson FP (1996) Anal Chem 68:1888–1894Google Scholar
  100. 100.
    Caimi RJ, Brenna JT (1993) Anal Chem 65:3497–3500Google Scholar
  101. 101.
    Brand WA, Dobberstein P (1996) Isot Environ Health Stud 32:275–283Google Scholar
  102. 102.
    Sessions AL, Sylva SP, Hayes JM (2005) Anal Chem 77:6519–6527Google Scholar
  103. 103.
    Krummen M, Hilkert AW, Juchelka D, Duhr A, Schlüter HJ, Pesch R (2004) Rapid Commun Mass Spectrom 18:2260–2266Google Scholar
  104. 104.
    Godin JP, Hau J, Fay LB, Hopfgartner G (2005) Rapid Commun Mass Spectrom 19:2689–2698Google Scholar
  105. 105.
    Cabanero AI, Recio JL, Ruperez M (2006) J Agric Food Chem 54:9719–9727Google Scholar
  106. 106.
    McCullagh JSO, Juchelka D, Hedges REM (2006) Rapid Commun Mass Spectrom 20:2761–2768Google Scholar
  107. 107.
    Heuer V, Elvert M, Tille S, Krummen M, Mollar XP, Hmelo LR, Hinrichs KU (2006) Limnol Oceanogr: Methods 4:346–357Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michaela Blessing
    • 1
  • Maik A. Jochmann
    • 2
  • Torsten C. Schmidt
    • 2
    Email author
  1. 1.Center for Applied Geoscience (ZAG)Eberhard Karls University of TuebingenTuebingenGermany
  2. 2.Instrumental Analytical ChemistryUniversity Duisburg-EssenDuisburgGermany

Personalised recommendations