Analytical and Bioanalytical Chemistry

, Volume 390, Issue 2, pp 487–494 | Cite as

Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS

  • S. Swoboda
  • M. Brunner
  • S. F. Boulyga
  • P. Galler
  • M. Horacek
  • T. ProhaskaEmail author
Original Paper


This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, the Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH4NO3 extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the ‘Marchfelder Spargel’ can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%.


Food authentication Strontium isotope ratio measurements Multicollector inductively coupled plasma mass spectrometry delimeter Asparagus Soil 



This work was supported by the Austrian Science Fund FWF (START Project 267 N11). This study was partially funded by the independent research programme of Austrian Research Center GmbH. Some of the asparagus samples were provided by the Verein der Marchfelder Spargelbauern, which is gratefully acknowledged.


  1. 1.
    John MD (1998) Analyst 123:151R–156RCrossRefGoogle Scholar
  2. 2.
    Cosio MS, Ballabio D, Benedetti S, Gigliotti C (2007) Food Chem 101:485–491CrossRefGoogle Scholar
  3. 3.
    Consolandi C, Palmieri L, Doveri S, Maestri E, Marmiroli N, Reale S, Lee D, Baldoni L, Tosti N, Severgnini M, De Bellis G, Castiglione B (2007) J Biotechnol 129:565–574CrossRefGoogle Scholar
  4. 4.
    Bonizzi I, Feligini M, Aleandri R, Enne G (2006) J Appl Microbiol 102:667–673CrossRefGoogle Scholar
  5. 5.
    Ruoff K, Luginbuhl W, Kunzli R, Bogdanov S, Bosset JO, von der Ohe K, von der Ohe W, Amado R (2006) J Agric Food Chem 54:6858–6866CrossRefGoogle Scholar
  6. 6.
    Tay A, Singh RK, Krishnan SS, Gore JP (2002) Lebensm Wiss Technol 35:99–103CrossRefGoogle Scholar
  7. 7.
    Brescia MA, Alviti G, Liuzzi V, Sacco A (2003) J Am Oil Chem Soc 80:645–650CrossRefGoogle Scholar
  8. 8.
    Rossmann A, Haberhauer G, Hölzl S, Horn P, Pichlmayer F, Voerkelius S (2000) Eur Food Res Technol 211:32–40CrossRefGoogle Scholar
  9. 9.
    Boner M, Förstel H (2004) Anal Bioanal Chem 378:301–310CrossRefGoogle Scholar
  10. 10.
    Camin F, Wietzerbin K, Cortes AB, Haberhauer G, Lees M, Versini G (2004) J Agric Food Chem 52:6592–6601CrossRefGoogle Scholar
  11. 11.
    Camin F, Bontempo L, Heinrich K, Horacek M, Kelly SD, Schlicht C, Thomas F, Monahan FJ, Hoogewerff J, Rossmann A (2007) Anal Bioanal Chem 389:309–320Google Scholar
  12. 12.
    Schmidt O, Quilter JM, Bahar B, Moloney AP, Scrimgeour CM, Begley IS, Monahan FJ (2005) Food Chem 91:545–549CrossRefGoogle Scholar
  13. 13.
    Anderson KA, Smith BW (2006) J Agric Food Chem 54:1747–1752CrossRefGoogle Scholar
  14. 14.
    Castineira Gómez MdM., Feldmann I, Jakubowski N, Andersson JT (2004) J Agric Food Chem 52:2962–2974CrossRefGoogle Scholar
  15. 15.
    Prohaska T, Köllensperger G, Krachler M, De Winne K, Stingeder G, Moens L (2000) J Anal At Spectrom 15:335–340CrossRefGoogle Scholar
  16. 16.
    Barbaste M, Halicz L, Galy A, Medina B, Emteborg H, Adams FC, Lobinski R (2001) Talanta 54:307–317CrossRefGoogle Scholar
  17. 17.
    Kawasaki A, Oda H, Hirata T (2002) Soil Sci Plant Nutr 48:635–640Google Scholar
  18. 18.
    Almeida CM, Vasconcelos MT (1999) Anal Chim Acta 396:45–53CrossRefGoogle Scholar
  19. 19.
    Almeida CM, Vasconcelos MT (2001) J Anal At Spectrom 16:607–611CrossRefGoogle Scholar
  20. 20.
    Almeida CM, Vasconcelos MT (2003) J Agric Food Chem 51:3012–3023CrossRefGoogle Scholar
  21. 21.
    Almeida CM, Vasconcelos MT (2004) Food Chem 85:7–12CrossRefGoogle Scholar
  22. 22.
    Milhajevic M, Ettler V, Šebek O, Ladislav Strnad L, Chrastný V (2006) J Geochem Explor 88:130–133CrossRefGoogle Scholar
  23. 23.
    Larcher R, Nicolini G, Pangrazzi P (2003) J Agric Food Chem 51:5956–5961CrossRefGoogle Scholar
  24. 24.
    Barbaste M, Medina B, Sarabia L, Ortiz MC, Pérez-Trujillo JP (2002) Anal Chim Acta 472:161–174CrossRefGoogle Scholar
  25. 25.
    Barbaste M, Halicz L, Galy A, Medina B, Emteborg H, Adams FC, Lobinski R (2001) Talanta 54:307–317CrossRefGoogle Scholar
  26. 26.
    Augagneur S, Medina B, Grousset F (1997) Fresenius J Anal Chem 357:1149–1152CrossRefGoogle Scholar
  27. 27.
    Coetzee PP, Vanhaecke F (2005) Anal Bioanal Chem 383:977–984CrossRefGoogle Scholar
  28. 28.
    Stein M, Starinsky A, Katz A, Goldstein SL, Machlus M, Schramm A (1997) Geochim Cosmochim Acta 61:3975–3992CrossRefGoogle Scholar
  29. 29.
    Sandroni V, Smith CMM, Donovan A (2003) Talanta 60:715–723CrossRefGoogle Scholar
  30. 30.
    Sastre J, Sahuquillo A, Vidal M, Rauret G (2002) Anal Chim Acta 462:59–72CrossRefGoogle Scholar
  31. 31.
    DIN V 19730 (1997): Bodenbeschaffenheit-Extraktion von Spurenelementen mit Ammoniumnitratlösung. Beuth, BerlinGoogle Scholar
  32. 32.
    Prohaska T, Latkoczy C, Schultheis G, Teschler-Nicola M, Stingeder G (2000) J Anal At Spectrom 17:887–891CrossRefGoogle Scholar
  33. 33.
    Albarède F, Télouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Geochim Cosmochim Acta 68:2725–2744CrossRefGoogle Scholar
  34. 34.
    EIChrom (2007) Accessed 16 Mar 2007
  35. 35.
    Zeien H, Brümmer GW (1989) Mitt. Dtsch. Bodenkdl. Ges. 59:505–510Google Scholar
  36. 36.
    Ettler V, Mihaljevič M, Šebek O, Nechutný Z (2007) Chemosphere 68:455–463CrossRefGoogle Scholar
  37. 37.
    Mc Culley R, Jobbágy E, Pockman W, Jackson, R (2004) Oecologia 141:620–628CrossRefGoogle Scholar
  38. 38.
    Prohaska T, Wenzel WW, Stingeder G (2005) Int J Mass Spectrom 242:243–250CrossRefGoogle Scholar
  39. 39.
    Negrel P, Grosbois C (1999) Chem Geol 156:231–249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. Swoboda
    • 1
  • M. Brunner
    • 1
  • S. F. Boulyga
    • 1
  • P. Galler
    • 1
  • M. Horacek
    • 2
  • T. Prohaska
    • 1
    Email author
  1. 1.Department of Chemistry-VIRIS ProjectUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Austrian Research Centers GmbHSeibersdorfAustria

Personalised recommendations