Analytical and Bioanalytical Chemistry

, Volume 389, Issue 5, pp 1447–1457 | Cite as

Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants

  • Christine Götz
  • Agnes Fekete
  • Istvan Gebefuegi
  • Sándor T. Forczek
  • Květoslava Fuksová
  • Xiaojing Li
  • Matthias Englmann
  • Milan Gryndler
  • Anton Hartmann
  • Miroslav Matucha
  • Philippe Schmitt-Kopplin
  • Peter Schröder
Original Paper

Abstract

Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds’ lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.

Keywords

UPLC FTICR-MS Tritium autoradiography Chiral separation Hordeum vulgare Pachyrhizus erosus 

References

  1. 1.
    Nealson KH, Platt T, Hastings JW (1970) J Bacteriol 104/1:313–322Google Scholar
  2. 2.
    Fuqua WC, Winans SC, Greenberg EP (1994) J Bacteriol 176:269–275Google Scholar
  3. 3.
    Pearson JP, Van Delden C, Iglewski BH (1999) J Bacteriol 181:1203–1210Google Scholar
  4. 4.
    March JC, Bentley WE (2004) Curr Opin Biotechnol 15:495–502CrossRefGoogle Scholar
  5. 5.
    Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A (2002) Curr Opin Plant Biol 5Google Scholar
  6. 6.
    Brelles-Mariño G, Bedmar EJ (2001) J Biotechnol 91:197–209CrossRefGoogle Scholar
  7. 7.
    Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) FEMS Microbiol Rev 25:365–404CrossRefGoogle Scholar
  8. 8.
    Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Nat Microbiol Rev 5:230–239CrossRefGoogle Scholar
  9. 9.
    Fekete A, Frommberger M, Rothballer M, Li X, Englmann M, Fekete J, Hartmann A, Eberl L, Schmitt-Kopplin P (2007) Anal Bioanal Chem 387:455–467CrossRefGoogle Scholar
  10. 10.
    Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) PNAS 100:1444–1449CrossRefGoogle Scholar
  11. 11.
    Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Breusegem Fv, Eberl L, Hartmann A, Langebartels C (2006) Plant Cell Environ 29:909–918CrossRefGoogle Scholar
  12. 12.
    Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) Microbiology 146:3237–3244Google Scholar
  13. 13.
    Gao M, Teplitski M, Robinson JB, Bauer WD (2003) MPMI 16/9:827–834Google Scholar
  14. 14.
    Wisniewski-Dyé F, Downie JA (2002) Antonie van Leeuwenhoek 81:397–407CrossRefGoogle Scholar
  15. 15.
    Miller MB, Bassler BL (2001) Rev Microbiol 55:165–199CrossRefGoogle Scholar
  16. 16.
    Conway B, Greenberg EP (2002) J Bacteriol 184/4:1187–1191CrossRefGoogle Scholar
  17. 17.
    Rothballer MH (2003) In situ Lokalisierung, PGPR-Effekt und Regulation des ipdC-Gens der Azospirillum brasilense Stämme Sp7 und Sp245 bei verschiedenen Weizensorten, sowie endophytische Kolonisierung durch Herbaspirillum sp. N3. PhD thesis:Ludwig-Maximilian-University Munich. http://edoc.ub.uni-muenchen.de/archive/00001795/00001701/Rothballer_Michael.pdf
  18. 18.
    Li X, Fekete A, Englmann M, Götz C, Rothballer M, Frommberger M, Buddrus K, Cai C, Schröder P, Hartmann A, Chen G, Schmitt-Kopplin P (2006) J Chromatogr A 1134:186–193CrossRefGoogle Scholar
  19. 19.
    Eberhard A, Widrig CA, Mc Bath P, Schineller B (1986) Arch Microbiol 146:35–40CrossRefGoogle Scholar
  20. 20.
    Chhabra SR, Stead P, Bainton NJ, Salmond GPC, Stewart GSAB, Williams P, Bycroft BW (1993) J Antibiot 46:441–454Google Scholar
  21. 21.
    Kaplan HB, Eberhard A, Widrig C, Greenberg EP (1985) J Labelled Compd Radiopharm 22:387–395CrossRefGoogle Scholar
  22. 22.
    Evans EA (1974) Tritium and its compounds. Butterworths, LondonGoogle Scholar
  23. 23.
    Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra S, Sockett R, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) Infect Immun 70/10:5635–5646CrossRefGoogle Scholar
  24. 24.
    Horwitz W, Kamps LR, Boyer KW (1980) J Assoc Off Anal Chem 63/6:1344–1354Google Scholar
  25. 25.
    Frommberger M (2005) Entwicklung von Methoden zur Analyse von N-Acyl-Homoserinlactonen durch Kapillartrenntechniken und Massenspektrometrie. PhD thesis, Technical University Munich. http://tumb1.biblio.tu-muenchen.de/publ/diss/ww/2005/frommberger.pdf
  26. 26.
    Byers JT, Lucas C, Salmond GPC, Welch M (2002) J Bacteriol 184/4:1163–1171CrossRefGoogle Scholar
  27. 27.
    Wang Y-J, Leadbetter JR (2005) Appl Environ Microbiol 71/3:1291–1299CrossRefGoogle Scholar
  28. 28.
    Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y (2005) FEMS Microbiol Ecol 52:13–20CrossRefGoogle Scholar
  29. 29.
    Chhabra SR, Harty C, Hooi DSW, Daykin M, Williams P, Telford G, Pritchard DI, Bycroft BW (2003) J Med Chem 46:97–104CrossRefGoogle Scholar
  30. 30.
    Pomini AM, Araújo WL, Marsaioli AJ (2006) J Chem Ecol 32:1769–1778CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christine Götz
    • 1
  • Agnes Fekete
    • 2
  • Istvan Gebefuegi
    • 2
  • Sándor T. Forczek
    • 3
  • Květoslava Fuksová
    • 4
  • Xiaojing Li
    • 2
    • 5
    • 6
  • Matthias Englmann
    • 2
  • Milan Gryndler
    • 7
  • Anton Hartmann
    • 1
  • Miroslav Matucha
    • 3
  • Philippe Schmitt-Kopplin
    • 2
  • Peter Schröder
    • 1
  1. 1.Department Microbe-Plant InteractionsGSF-National Research Center for Environment and HealthNeuherbergGermany
  2. 2.Institute of Ecological ChemistryGSF-National Research Center for Environment and HealthNeuherbergGermany
  3. 3.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  4. 4.First Faculty of MedicineCharles UniversityPragueCzech Republic
  5. 5.Ministry of Education Key Laboratory of Analysis and Detection Technology for Food SafetyFuzhou UniversityFuzhouChina
  6. 6.Department of ChemistryFuzhou UniversityFuzhouChina
  7. 7.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations