Analytical and Bioanalytical Chemistry

, Volume 389, Issue 5, pp 1409–1419 | Cite as

The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics

  • Corey E. Bakalarski
  • Wilhelm Haas
  • Noah E. Dephoure
  • Steven P. Gygi
Original Paper

Abstract

Proteomic analyses via tandem mass spectrometry have been greatly enhanced by the recent development of fast, highly accurate instrumentation. However, successful application of these developments to high-throughput experiments requires careful optimization of many variables which adversely affect each other, such as mass accuracy and data collection speed. We examined the performance of three shotgun-style acquisition methods ranging in their data collection speed and use of mass accuracy in identifying proteins from yeast-derived complex peptide and phosphopeptide-enriched mixtures. We find that the combination of highly accurate precursor masses generated from one survey scan in the FT-ICR cell, coupled with ten data-dependent tandem MS scans in a lower-resolution linear ion trap, provides more identifications in both mixtures than the other examined methods. For phosphopeptide identifications in particular, this method identified over twice as many unique phosphopeptides as the second-ranked, lower-resolution method from triplicate 90-min analyses (744 ± 50 vs. 308 ± 50, respectively). We also examined the performance of four popular peptide assignment algorithms (Mascot, Sequest, OMSSA, and Tandem) in analyzing the results from both high-and low-resolution data. When compared in the context of a false positive rate of approximately 1%, the performance differences between algorithms were much larger for phosphopeptide analyses than for an unenriched, complex mixture. Based upon these findings, acquisition speed, mass accuracy, and the choice of assignment algorithm all largely affect the number of peptides and proteins identified in high-throughput studies.

Keywords

Mass accuracy Phosphorylation analysis Database searching Shotgun sequencing High-throughput proteomics 

Supplementary material

216_2007_1563_MOESM1_ESM.pdf (477 kb)
ESM 1(PDF 476 kb)

References

  1. 1.
    Syka JE, Marto JA, Bai DL, Horning S, Senko MW, Schwartz JC, Ueberheide B, Garcia B, Busby S, Muratore T, Shabanowitz J, Hunt DF (2004) J Proteome Res 3:621–626CrossRefGoogle Scholar
  2. 2.
    Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) Nature 419:520–526CrossRefGoogle Scholar
  3. 3.
    Everley PA, Bakalarski CE, Elias JE, Waghorne CG, Beausoleil SA, Gerber SA, Faherty BK, Zetter BR, Gygi SP (2006) J Proteome Res 5:1224–1231CrossRefGoogle Scholar
  4. 4.
    Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, Eling WM, Hall N, Waters AP, Stunnenberg HG, Mann M (2002) Nature 419:537–542CrossRefGoogle Scholar
  5. 5.
    Dieguez-Acuna FJ, Gerber SA, Kodama S, Elias JE, Beausoleil SA, Faustman D, Gygi SP (2005) Mol Cell Proteomics 4:1459–1470CrossRefGoogle Scholar
  6. 6.
    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Proc Natl Acad Sci USA 101:12130–12135CrossRefGoogle Scholar
  7. 7.
    Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) Nat Biotechnol 24:1285–1292CrossRefGoogle Scholar
  8. 8.
    Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Proc Natl Acad Sci USA 104:1488–1493CrossRefGoogle Scholar
  9. 9.
    Li X, Gerber SA, Rudner AD, Beausoleil SA, Haas W, Villen J, Elias JE, Gygi SP (2007) J Proteome Res 6:1190–1197CrossRefGoogle Scholar
  10. 10.
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Cell 127:635–648CrossRefGoogle Scholar
  11. 11.
    Olsen JV, Ong SE, Mann M (2004) Mol Cell Proteomics 3:608–614CrossRefGoogle Scholar
  12. 12.
    Mayya V, Rezaul K, Cong YS, Han D (2005) Mol Cell Proteomics 4:214–223Google Scholar
  13. 13.
    Haas W, Faherty BK, Gerber SA, Elias JE, Beausoleil SA, Bakalarski CE, Li X, Villen J, Gygi SP (2006) Mol Cell Proteomics 5:1326–1337CrossRefGoogle Scholar
  14. 14.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Electrophoresis 20:3551–3567CrossRefGoogle Scholar
  15. 15.
    Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) J Proteome Res 3:958–964CrossRefGoogle Scholar
  16. 16.
    Eng JK, McCormack AL, Yates I, John R (1994) J Am Soc Mass Spectrom 5:976–989CrossRefGoogle Scholar
  17. 17.
    Craig R, Beavis RC (2004) Bioinformatics 20:1466–1467CrossRefGoogle Scholar
  18. 18.
    Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Academic, San DiegoCrossRefGoogle Scholar
  19. 19.
    Mortimer RK, Johnston JR (1986) Genetics 113:35–43Google Scholar
  20. 20.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858CrossRefGoogle Scholar
  21. 21.
    Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) Nat Biotechnol 22:1459–1466CrossRefGoogle Scholar
  22. 22.
    Elias JE, Gygi SP (2007) Nat Methods 4:207–214CrossRefGoogle Scholar
  23. 23.
    Elias JE, Haas W, Faherty BK, Gygi SP (2005) Nat Methods 2:667–675CrossRefGoogle Scholar
  24. 24.
    Liu H, Sadygov RG, Yates JR 3rd (2004) Anal Chem 76:4193–4201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Corey E. Bakalarski
    • 1
  • Wilhelm Haas
    • 1
  • Noah E. Dephoure
    • 1
  • Steven P. Gygi
    • 1
  1. 1.Department of Cell BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations