Analytical and Bioanalytical Chemistry

, Volume 390, Issue 1, pp 45–51 | Cite as

In vitro translation with [34S]-labeled methionine, selenomethionine, and telluromethionine

  • Yasumitsu Ogra
  • Takashi Kitaguchi
  • Noriyuki Suzuki
  • Kazuo T. Suzuki
Original Paper

Abstract

Heteroisotope and heteroatom tagging with [34S]-enriched methionine (Met), selenomethionine (SeMet), and telluromethionine (TeMet) was applied to in vitro translation. Green fluorescent protein (GFP) and JNK stimulatory phosphatase-1 (JSP-1) genes were translated with wheat germ extract (WGE) in the presence of Met derivatives. GFPs containing Met derivatives were subjected to HPLC coupled with treble detection, i.e., a photodiode array detector, a fluorescence detector, and an inductively coupled plasma mass spectrometer (ICP-MS). The activities of JSP-1-containing Met derivatives were also measured. GFP and JSP-1 containing [34S]-Met and SeMet showed comparable fluorescence intensities and enzyme activities to those containing naturally occurring Met. TeMet was unstable and decomposed in WGE, whereas SeMet was stable throughout the experimental period. Thus, although Te was the most sensitive to ICP-MS detection among S, Se, and Te, TeMet was less incorporated into the proteins than Met and SeMet. Finally, the potential of heteroisotope and heteroatom tagging of desired proteins in in vitro translation followed by ICP-MS detection was discussed.

Figure

TeMet was less incorporated into GFP than Met and SeMet due to its instability in WGE

Keywords

ICP-MS Stable isotope Methionine Selenomethionine Telluromethionine GFP In vitro translation 

Notes

Acknowledgements

We would like to acknowledge Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 16689005, 16209004, and 19390033), and the financial support from Agilent Technologies Foundation, USA. We also wish to thank ZOEGENE Co. for the in vitro translation kit and control mRNA, and Showa Denko for the HPLC system.

References

  1. 1.
    Sanz-Medel A (2005) Anal Bioanal Chem 381:1–2CrossRefGoogle Scholar
  2. 2.
    Sanz-Medel A, Montes-Bayón M, Fernández Sánchez ML (2003) Anal Bioanal Chem 377:236–247CrossRefGoogle Scholar
  3. 3.
    Łobiński R, Schaumlöffel D, Szpunar J (2006) Mass Spectrom Rev 25:255–289CrossRefGoogle Scholar
  4. 4.
    Szpunar J (2005) Analyst 130:442–465CrossRefGoogle Scholar
  5. 5.
    Pereira Navaza A, Ruiz Encinar J, Sanz-Medel A (2007) Angew Chem Int Ed Engl 46:569–571CrossRefGoogle Scholar
  6. 6.
    Michalke B, Schramel P (1999) Electrophoresis 20:2547–2553CrossRefGoogle Scholar
  7. 7.
    Baranov VI, Quinn Z, Bandura DR, Tanner SD (2002) Anal Chem 74:1629–1636CrossRefGoogle Scholar
  8. 8.
    Nojima T, Kondoh Y, Takenaka S, Ichihara T, Takagi M, Tashiro H, Matsumoto K (2001) Nucleic Acids Res Suppl 1:105–106Google Scholar
  9. 9.
    Matsumoto K, Yuan J, Wang G, Kimura H (1999) Anal Biochem 276:81–87CrossRefGoogle Scholar
  10. 10.
    Suzuki KT (2005) J Health Sci 51:107–114CrossRefGoogle Scholar
  11. 11.
    B’Hymer C, Caruso JA (2006) J Chromatogr A 1114:1–20CrossRefGoogle Scholar
  12. 12.
    Meija J, Montes-Bayón M, Caruso JA, Sanz-Medel A (2006) Trends Anal Chem 25:44–51CrossRefGoogle Scholar
  13. 13.
    Birringer M, Pilawa S, Flohé L (2002) Nat Prod Rep 19:693–718CrossRefGoogle Scholar
  14. 14.
    O’Gara M, Adams GM, Gong W, Kobayashi R, Blumenthal RM, Cheng X (1997) Eur J Biochem 247:1009–1018CrossRefGoogle Scholar
  15. 15.
    Pavlov MY, Ehrenberg M (1996) Arch Biochem Biophys 328:9–16CrossRefGoogle Scholar
  16. 16.
    Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) Proc Natl Acad Sci USA 97:559–564CrossRefGoogle Scholar
  17. 17.
    Schindler PT, Macherhammer F, Arnold S, Reuss M, Siemann M (1999) Electrophoresis 20:806–812CrossRefGoogle Scholar
  18. 18.
    Yokota T, Nara Y, Kashima A, Matsubara K, Misawa S, Kato R, Sugio S (2007) Proteins 66:272–278CrossRefGoogle Scholar
  19. 19.
    Schindler PT, Baumann S, Reuss M, Siemann M (2000) Electrophoresis 21:2606–2609CrossRefGoogle Scholar
  20. 20.
    Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Gene 111:229–233CrossRefGoogle Scholar
  21. 21.
    Knapp FF Jr (1979) J Org Chem 44:1007–1009CrossRefGoogle Scholar
  22. 22.
    Ogra Y, Ishiwata K, Suzuki KT (2005) Anal Chim Acta 554:123–129CrossRefGoogle Scholar
  23. 23.
    Divjak B, Goessler W (1999) J Chromatogr A 844:161–169CrossRefGoogle Scholar
  24. 24.
    Koplík R, Pavelková H, Cincibuchová J, Mestek O, Kvasnika F, Suchánek M (2002) J Chromatogr B Anal Technol Biomed Life Sci 770:261–273CrossRefGoogle Scholar
  25. 25.
    Suzuki KT, Yoneda S, Itoh M, Ohmichi M (1995) J Chromatogr B Biomed Sci Appl 670:63–71CrossRefGoogle Scholar
  26. 26.
    Boles JO, Lebioda L, Dunlap RB, Odom JD (1995) SAAS Bull Biochem Biotechnol 8:29–34Google Scholar
  27. 27.
    Budisa N, Karnbrock W, Steinbacher S, Humm A, Prade L, Neuefeind T, Moroder L, Huber R (1997) J Mol Biol 25:616–623CrossRefGoogle Scholar
  28. 28.
    Kigawa T, Yamaguchi-Nunokawa E, Kodama K, Matsuda T, Yabuki T, Matsuda N, Ishitani R, Nureki O, Yokoyama S (2002) J Struct Funct Genomics 2:29–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yasumitsu Ogra
    • 1
  • Takashi Kitaguchi
    • 1
  • Noriyuki Suzuki
    • 1
  • Kazuo T. Suzuki
    • 1
  1. 1.Graduate School of Pharmaceutical SciencesChiba University, ChuoChibaJapan

Personalised recommendations