Advertisement

Analytical and Bioanalytical Chemistry

, Volume 389, Issue 4, pp 1249–1257 | Cite as

Structural and analytical studies of silica accumulations in Equisetum hyemale

  • Lanny Sapei
  • Notburga Gierlinger
  • Jürgen Hartmann
  • Robert Nöske
  • Peter Strauch
  • Oskar Paris
Original Paper

Abstract

Horsetail (Equisetum spp.) is known as one of the strongest accumulators of silicon among higher terrestrial plants. We use the combination of position-resolved analytical techniques, namely microtomography, energy-dispersive X-Ray elemental mapping, Raman microscopy, as well as small-angle and wide-angle scattering of X-rays, to study the type, distribution and nanostructure of silica in the internodes of Equisetum hyemale. The predominant silicification pattern is a thin continuous layer on the entire outer epidermis with the highest density in particular knob regions of the long epidermal cells. The knob tips contain up to 33 wt% silicon in the form of pure hydrated amorphous silica, while the silica content is lower in the inner part of the knobs and on the continuous layer. In contrast to the knob tips, the silica in these regions lacks silanol groups and is proposed to be in close association with polysaccharides. No mentionable amount of crystalline silica is detected by wide-angle X-ray scattering. The small-angle X-ray scattering data are consistent with the presence of colloidal, sheet-like silica agglomerates with a thickness of about 2 nm. From these results we conclude that there are at least two distinct forms of silica in E. hyemale which may have different functions. The close association of silica with cell wall polymers suggests that they may act as a polymeric template that controls the shape and size of the colloidal silica particles similar to many other biominerals and mineralised tissues. We propose that owing to its specific distribution in E. hyemale, a protective role and possibly also an important biomechanical role are among the most likely functions of silica in these plants.

Figure

3D rendering of X-ray microtomography data from a dry Equisetum hyemale stalk. The red colour indicates high X-ray absorption values due to local silica accumulations

Keywords

Equisetum hyemale Silica Raman microscopy Microtomography Small-angle X-ray scattering Wide-angle X-ray scattering 

Notes

Acknowledgements

We thank Annemarie Martins for help with the sample preparations and Ingrid Zenke for technical assistance during X-ray scattering. We wish to thank Willie Abasolo and Rivka Elbaum for several useful discussions. Financial support from the Max Planck Society is gratefully acknowledged. N.G. acknowledges financial support from the Austrian Programme for Advanced Research and Technology (APART) of the Austrian Academy of Sciences.

References

  1. 1.
    Weiner S, Addadi L (1997) J Mater Chem 7:689–702CrossRefGoogle Scholar
  2. 2.
    Weiner S, Wagner HD (1998) Annu Rev Mater Sci 28:271–298CrossRefGoogle Scholar
  3. 3.
    Sanchez C, Arribart H, Guille MMG (2005) Nat Mater 4:277–288Google Scholar
  4. 4.
    Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Science 309:275–278CrossRefGoogle Scholar
  5. 5.
    Epstein E (1999) Annu Rev Plant Physiol Plant Mol Biol 50:641–664CrossRefGoogle Scholar
  6. 6.
    Lowenstam HA (1981) Science 211:1126–1131CrossRefGoogle Scholar
  7. 7.
    Timell TE (1964) Sven Papperstidn 67:356–363Google Scholar
  8. 8.
    Jones LHP, Handreck KA (1967) Adv Agron 19:107–149CrossRefGoogle Scholar
  9. 9.
    Hoffman FM, Hillson CJ (1979) Bot Gaz 140:127–132CrossRefGoogle Scholar
  10. 10.
    Kaufman PB, LaCroix JD, Dayanandan P, Allard LF, Rosen JJ, Bigelow WC (1973) Dev Biol 31:124–135CrossRefGoogle Scholar
  11. 11.
    Perry CC, Fraser MA (1991) Philos Trans R Soc Lond Ser B 334:149–157CrossRefGoogle Scholar
  12. 12.
    Epstein E (1994) Proc Natl Acad Sci USA 91:11–17CrossRefGoogle Scholar
  13. 13.
    Holzhueter G, Narayanan K, Gerber T (2003) Anal Bioanal Chem 376:512–517CrossRefGoogle Scholar
  14. 14.
    Kaufman PB, Bigelow WC, Schmid R, Ghosheh NS (1971) Am J Bot 58:309–316CrossRefGoogle Scholar
  15. 15.
    Gailliez-Degremont E, Bacquet M, Laureyns J, Morcellet M (1997) J Appl Poly Sci 65:871–882CrossRefGoogle Scholar
  16. 16.
    Edwards HGM, Farwell DW, Webster D (1997) Spectrochim Acta Part A 53:2383–2392CrossRefGoogle Scholar
  17. 17.
    Prinsloo LC, du Plooy W, van der Merwe C (2004) J Raman Spectrosc 35:561–567CrossRefGoogle Scholar
  18. 18.
    Séné CFB, McCann MC, Wilson RH, Crinter R (1994) Plant Physiol 106:1623–1631Google Scholar
  19. 19.
    Jetter R, Schaffer S, Riederer M (2000) Plant Cell Environ 23:619–628CrossRefGoogle Scholar
  20. 20.
    Lanning FC, Ponnaiya BW, Crumpton CF (1958) Plant Physiol 33:339–343Google Scholar
  21. 21.
    Glatter O, Kratky O (1982) Small-angle X-ray scattering. Academic, LondonGoogle Scholar
  22. 22.
    Fratzl P, Jakob HF, Rinnerthaler S, Roschger P, Klaushofer K (1997) J Appl Crystallogr 30:765–769CrossRefGoogle Scholar
  23. 23.
    Carnelli AL, Theurillat JP, Madella M (2004) Rev Paleobot Palynol 129:39–65CrossRefGoogle Scholar
  24. 24.
    Perry CC, Keeling-Tucker T (2000) J Biol Inorg Chem 5:537–550CrossRefGoogle Scholar
  25. 25.
    Lewin JC, Reimann BEF (1969) Annu Rev Plant Physiol 20:289–304CrossRefGoogle Scholar
  26. 26.
    Mann S, Perry CC, Williams RJP, Fyfe CA, Gobbi GC, Kennedy GJ (1983) J Chem Soc Chem Commun 4:168–170CrossRefGoogle Scholar
  27. 27.
    Perry CC, Keeling-Tucker T (2003) Colloid Polym Sci 281:652–664CrossRefGoogle Scholar
  28. 28.
    Hartley RD, Jones LHP (1972) J Exp Bot 23:637–640CrossRefGoogle Scholar
  29. 29.
    Chen CH, Lewin J (1969) Can J Bot 47:125–131CrossRefGoogle Scholar
  30. 30.
    Lucas PW, Turner IM, Dominy NJ, Yamashita, N (2000) Ann Bot 86:913–920CrossRefGoogle Scholar
  31. 31.
    Yoshida S, Ohnishi Y, Kitagishi K (1962) Soil Sci Plant Nutr 8(2):1–5Google Scholar
  32. 32.
    Yoshida S, Ohnishi Y, Kitagishi K (1959) Soil Plant Food 5(3):127–133Google Scholar
  33. 33.
    Speck T, Speck O, Emanns A, Spatz HC (1998) Bot Acta 111:366–376Google Scholar
  34. 34.
    Woesz A, Weaver JC, Kazanci M, Dauphin Y, Aizenberg J, Morse DE, Fratzl P (2006) J Mater Res 21:268–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lanny Sapei
    • 1
  • Notburga Gierlinger
    • 1
  • Jürgen Hartmann
    • 2
  • Robert Nöske
    • 3
  • Peter Strauch
    • 3
  • Oskar Paris
    • 1
  1. 1.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdam-GolmGermany
  2. 2.Department of ColloidsMax Planck Institute of Colloids and InterfacesPotsdam-GolmGermany
  3. 3.Department of ChemistryPotsdam UniversityPotsdam-GolmGermany

Personalised recommendations