Advertisement

Proteome analysis of Apis mellifera royal jelly

  • Simone Schönleben
  • Albert Sickmann
  • Martin J. Mueller
  • Joerg Reinders
Original Paper

Abstract

Royal jelly plays a pivotal role in the development of honey bee larvae. However, while various health promoting properties of royal jelly have been reported, most of the active substances within royal jelly that lead to these properties are still unknown. Since up to 50% (dry mass) of royal jelly is protein, royal jelly proteome analysis is a promising starting point for attempts to identify the proteins that provide health-promoting effects. However, the comprehensive analysis of royal jelly proteins is hampered by the enormous abundance of some proteins in the major royal jelly protein family, which constitutes 80–90% of the royal jelly proteome. The high heterogeneity of these proteins is an additional challenge for proteomic analysis, since it necessitates the use of analytical techniques that provide high resolution and a wide dynamic range. The application of individual methods such as 2D-PAGE or multidimensional chromatography can only yield certain subpopulations of a proteome due to the specific bias of each method. We applied different methods for the prefractionation and separation of royal jelly proteins in order to circumvent the shortcomings of the individual techniques and achieve a high coverage of the royal jelly proteome. In this way, we were able to identify 20 different proteins in total, as well as to show a very high degree of cleavage of different proteins of the major royal jelly protein family. Furthermore, we investigated the protein phosphorylation of royal jelly proteins, and identified and located two phosphorylation sites within venom protein 2.

Keywords

Prefractionation 2D-PAGE Isoelectric focussing Phosphorylation Multidimensional liquid chromatography 

Abbreviations

MDLC

multidimensional liquid chromatography

MOPS

morpholino-propanesulfonic acid

MRJP

major royal jelly protein

MW

molecular weight

Supplementary material

References

  1. 1.
    Williams DL (2000) Vet J 160:61–73CrossRefGoogle Scholar
  2. 2.
    Kucharski R, Maleszka R (2002) Genome Biol 3:RESEARCH0007.1–7.9Google Scholar
  3. 3.
    Moritz RF, Lattorff HM, Neumann P, Kraus FB, Radloff SE, Hepburn HR (2005) Naturwissenschaften 92:488–491CrossRefGoogle Scholar
  4. 4.
    Santos KS, dos Santos LD, Mendes MA, de Souza BM, Malaspina O, Palma MS (2005) Insect Biochem Mol Biol 35:85–91CrossRefGoogle Scholar
  5. 5.
    Scarselli R, Donadio E, Giuffrida MG, Fortunato D, Conti A, Balestreri E, Felicioli R, Pinzauti M, Sabatini AG, Felicioli A (2005) Proteomics 5:769–776CrossRefGoogle Scholar
  6. 6.
    Schmitzova J, Klaudiny J, Albert S, Schroder W, Schreckengost W, Hanes J, Judova J, Simuth J (1998) Cell Mol Life Sci 54:1020–1030CrossRefGoogle Scholar
  7. 7.
    Miyata T (2007) J Pharmacol Sci 103:127–131CrossRefGoogle Scholar
  8. 8.
    Kobayashi N, Unten S, Kakuta H, Komatsu N, Fujimaki M, Satoh K, Aratsu C, Nakashima H, Kikuchi H, Ochiai K, Sakagami H (2001) In Vivo 15:17–23Google Scholar
  9. 9.
    Ghosh S, Playford RJ (2003) Clin Sci (Lond) 104:547–556CrossRefGoogle Scholar
  10. 10.
    Stocker A, Schramel P, Kettrup A, Bengsch E (2005) J Trace Elem Med Biol 19:183–189CrossRefGoogle Scholar
  11. 11.
    Nagai T, Inoue R, Suzuki N, Nagashima T (2006) J Med Food 9:363–367CrossRefGoogle Scholar
  12. 12.
    Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (1990) J Biol Chem 265:11333–11337Google Scholar
  13. 13.
    Colhoun EH, Smith MV (1960) Nature 188:854–855CrossRefGoogle Scholar
  14. 14.
    Tamura T, Fujii A, Kuboyama N (1987) Nippon Yakurigaku Zasshi 89:73–80Google Scholar
  15. 15.
    Dixit PK, Patel NG (1964) Nature 202:189–190CrossRefGoogle Scholar
  16. 16.
    Nagai T, Inoue R (2004) Food Chem 84:181–186CrossRefGoogle Scholar
  17. 17.
    Okamoto I, Taniguchi Y, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M (2003) Life Sci 73:2029–2045CrossRefGoogle Scholar
  18. 18.
    Kimura M, Kimura Y, Tsumura K, Okihara K, Sugimoto H, Yamada H, Yonekura M (2003) Biosci Biotechnol Biochem 67:2055–2058CrossRefGoogle Scholar
  19. 19.
    Tomoda G, Matsuyama J, Matsuka M (1977) J Apic Res 16:125–130Google Scholar
  20. 20.
    Sano O, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M (2004) J Agric Food Chem 52:15–20CrossRefGoogle Scholar
  21. 21.
    Albertova V, Su S, Brockmann A, Gadau J, Albert S (2005) J Agric Food Chem 53:8075–8081CrossRefGoogle Scholar
  22. 22.
    Albert S, Klaudiny J, Simuth J (1999) Insect Biochem Mol Biol 29:427–434CrossRefGoogle Scholar
  23. 23.
    Albert S, Bhattacharya D, Klaudiny J, Schmitzova J, Simuth J (1999) J Mol Evol 49:290–297CrossRefGoogle Scholar
  24. 24.
    Neuhoff V, Stamm R, Pardowitz I, Arold N, Ehrhardt W, Taube D (1990) Electrophoresis 11:101–117CrossRefGoogle Scholar
  25. 25.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858CrossRefGoogle Scholar
  26. 26.
    Blum H, Beier H, Gross HJ (1987) Electrophoresis 8:93–99CrossRefGoogle Scholar
  27. 27.
    Sickmann A, Dormeyer W, Wortelkamp S, Woitalla D, Kuhn W, Meyer HE (2000) Electrophoresis 21:2721–2728CrossRefGoogle Scholar
  28. 28.
    Wagner Y, Sickmann A, Meyer HE, Daum G (2003) J Am Soc Mass Spectrom 14:1003–1011CrossRefGoogle Scholar
  29. 29.
    Grosse-Coosmann F, Boehm AM, Sickmann A (2005) BMC Bioinformatics 6:290CrossRefGoogle Scholar
  30. 30.
    Sickmann A, Mreyen M, Meyer HE (2002) IUBMB Life 54:51–57CrossRefGoogle Scholar
  31. 31.
    Reinders J, Sickmann A (2005) Proteomics 5(16):4052–4061Google Scholar
  32. 32.
    Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Van Beeumen J, Jacobs FJ (2005) Biochim Biophys Acta 1752:1–5Google Scholar
  33. 33.
    Bilikova K, Hanes J, Nordhoff E, Saenger W, Klaudiny J, Simuth J (2002) FEBS Lett 528:125–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Simone Schönleben
    • 1
  • Albert Sickmann
    • 2
  • Martin J. Mueller
    • 1
  • Joerg Reinders
    • 1
  1. 1.Biocenter, Pharmaceutical Biology, Proteomics Group, Julius-von-Sachs-Institute for BiosciencesUniversity of WuerzburgWuerzburgGermany
  2. 2.Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental BiomedicineUniversity of WuerzburgWuerzburgGermany

Personalised recommendations