Advertisement

Analytical and Bioanalytical Chemistry

, Volume 389, Issue 3, pp 697–706 | Cite as

Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

  • Sergei F. BoulygaEmail author
  • Jens Heilmann
  • Thomas Prohaska
  • Klaus G. Heumann
Original Paper

Abstract

A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for 35Cl+ to more than 6 × 105 cps for 238U+ for 1 μg of trace element per gram of coal sample. Detection limits vary from 450 ng g−1 for chlorine and 18 ng g−1 for sulfur to 9.5 pg g−1 for mercury and 0.3 pg g−1 for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

Figure

LA-ICP-IDMS allows direct multi-element determination in powdered coal samples

Keywords

Laser ablation ICP-MS Coal Metals Sulfur Chlorine 

Notes

Acknowledgement

The authors are grateful to the Stiftung Rheinland-Pfalz für Innovation for financial support. S.B. and T.P. also acknowledge support by the Austrian Science Fund FWF (START project 267-N11).

References

  1. 1.
    Meij R, Winkel HT (2005) Heavy metals and POPs emissions, inventories and projections. Proceedings of the TFEIP & ESPREME Workshop, Rovaniemi, Finland, Oct 18–19Google Scholar
  2. 2.
    United Nations Scientific Committee on the Effects of Atomic Radiation (2000) UNSCEAR 2000 report to the general assembly: sources and effects of ionizing radiation, Annex B. United Nations, New YorkGoogle Scholar
  3. 3.
    Bunzl K, Hotzl H, Rosner G, Winkler R (1984) Sci Total Environ 38:15–31CrossRefGoogle Scholar
  4. 4.
    Weng YH, Chu TC (1992) J Radiat Res 33:141–150CrossRefGoogle Scholar
  5. 5.
    Roseberry LM, Scott TG (1985) J Radioanal Nucl Chem 93:271–278CrossRefGoogle Scholar
  6. 6.
    Martin SA, Gallaher MP, O’Connor AC (2000) Economic impact of standard reference materials for sulfur in fossil fuels. Final report, RTI project number 7007-006. Research Triangle Institute Center for Economic Research, Research Triangle Park, NCGoogle Scholar
  7. 7.
    Welz B, Sperling M (1999) Atomic absorption spectrometry. Wiley-VCH, Weinheim, New YorkGoogle Scholar
  8. 8.
    Rodushkin I, Axelsson MD, Burman E (2000) Talanta 51:743–759CrossRefGoogle Scholar
  9. 9.
    Ikävalko E, Laitinen T, Revitzer H (1999) Fresenius J Anal Chem 363:314–316CrossRefGoogle Scholar
  10. 10.
    Howard ME, Vocke RD Jr (2004) J Anal At Spectrom 19:1423–1427CrossRefGoogle Scholar
  11. 11.
    Borges DLG, da Silva AF, Curtius AJ, Welz B, Heitmann U (2006) Microchim Acta 154:101–107CrossRefGoogle Scholar
  12. 12.
    Kleiber L, Fink H, Niessner R, Panne U (2002) Anal Bioanal Chem 374:109–114CrossRefGoogle Scholar
  13. 13.
    Booth CA, Spears DA, Krause P, Cox AG (1999) Fuel 78:1665–1670CrossRefGoogle Scholar
  14. 14.
    Gravel JFY, Viger ML, Nobert P, Boudreau D (2004) Appl Spectroscopy 58:727–733CrossRefGoogle Scholar
  15. 15.
    Tibi M, Heumann KG (2003) J Anal At Spectrom 18:1076–1081CrossRefGoogle Scholar
  16. 16.
    Tibi M, Heumann KG (2003) Anal Bioanal Chem 377:126–131CrossRefGoogle Scholar
  17. 17.
    Boulyga SF, Tibi M, Heumann KG (2004) Anal Bioanal Chem 378:342–347CrossRefGoogle Scholar
  18. 18.
    Boulyga SF, Heumann KG (2005) Int J Mass Spectrom 242:291–296CrossRefGoogle Scholar
  19. 19.
    Heumann KG (1988) In: Adams F, Gijbels R, van Grieken R (eds) Inorganic mass spectrometry. Wiley, New York, pp 301–376Google Scholar
  20. 20.
    Becker JS, Dietze HJ (1997) Fresenius J Anal Chem 359:338–345CrossRefGoogle Scholar
  21. 21.
    Günther D, Heinrich CA (1999) J Anal At Spectrom 14:1363–1368CrossRefGoogle Scholar
  22. 22.
    Moser J, Wegscheider W, Meisel T, Fellner N (2003) Anal Bioanal Chem 377:97–110CrossRefGoogle Scholar
  23. 23.
    Stach E, Mackowsky MT, Teichmüller M (1982) Stach’s textbook of coal petrology. Borntraeger, BerlinGoogle Scholar
  24. 24.
    Yudovich YE, Ketris MP (2005) Int J Coal Geol 62:107–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sergei F. Boulyga
    • 1
    • 2
    Email author
  • Jens Heilmann
    • 2
  • Thomas Prohaska
    • 1
  • Klaus G. Heumann
    • 2
  1. 1.Department of Chemistry, Division of Analytical Chemistry-VIRIS LaboratoryUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg-UniversityMainzGermany

Personalised recommendations