Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 527–532 | Cite as

Room temperature ionic liquid doped DNA network immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide

  • Cunlan Guo
  • Yonghai Song
  • Hui Wei
  • Peicai Li
  • Li Wang
  • Lanlan Sun
  • Yujing Sun
  • Zhuang Li
Original Paper

Abstract

A novel electrochemical H2O2 biosensor was constructed by embedding horseradish peroxide (HRP) in a 1-butyl-3-methylimidazolium tetrafluoroborate doped DNA network casting on a gold electrode. The HRP entrapped in the composite system displayed good electrocatalytic response to the reduction of H2O2. The composite system could provide both a biocompatible microenvironment for enzymes to keep their good bioactivity and an effective pathway of electron transfer between the redox center of enzymes, H2O2 and the electrode surface. Voltammetric and time-based amperometric techniques were applied to characterize the properties of the biosensor. The effects of pH and potential on the amperometric response to H2O2 were studied. The biosensor can achieve 95% of the steady-state current within 2 s response to H2O2. The detection limit of the biosensor was 3.5 μM, and linear range was from 0.01 to 7.4 mM. Moreover, the biosensor exhibited good sensitivity and stability. The film can also be readily used as an immobilization matrix to entrap other enzymes to prepare other similar biosensors.

Figure

Horseradish peroxidase (HRP) embedded in a 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM·BF4) doped DNA network can be used to fabricate a HRP sensor for the determination of H2O2

Keywords

DNA Room temperature ionic liquid Horseradish peroxidase Hydrogen peroxide Biosensor 

References

  1. 1.
    Bakker E, Qin Y (2006) Anal Chem 78:3965–3984CrossRefGoogle Scholar
  2. 2.
    Willner I, Katz E (2000) Angew Chem Int Ed Engl 39:1180–1218CrossRefGoogle Scholar
  3. 3.
    Jia JB, Wang BW, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) Anal Chem 74:2217–2223CrossRefGoogle Scholar
  4. 4.
    Yu DH, Renedo OD, Blankert B, Sima V, Sandulescu R, Arcos J, Kaufmann JM (2006) Electroanalysis 18:1637–1642CrossRefGoogle Scholar
  5. 5.
    Armstrong FA, Heering HA, Hirst J (1997) Chem Soc Rev 26:169–179CrossRefGoogle Scholar
  6. 6.
    Wang J, Chen L, Hocevar SB, Ogorevc B (2000) Analyst 125:1431–1434CrossRefGoogle Scholar
  7. 7.
    Luo XL, Xu JJ, Du Y, Chen HY (2004) Anal Biochem 334:284–289CrossRefGoogle Scholar
  8. 8.
    Bongiovanni C, Ferri T, Poscia A, Varalli M, Santucci R, Desideri A (2001) Bioelectrochemistry 54:17–22CrossRefGoogle Scholar
  9. 9.
    Nostu H, Tatsuma T, Fujishima A (2002) J Electroanal Chem 523:86–92CrossRefGoogle Scholar
  10. 10.
    Murphy L (2006) Curr Opin Chem Biol 10:177–184CrossRefGoogle Scholar
  11. 11.
    Tang JL, Wang BQ, Wu ZY, Han XJ, Dong SJ, Wang EK (2003) Biosens Bioelectron 18:867–872CrossRefGoogle Scholar
  12. 12.
    Wang G, Xu JJ, Chen HY, Lu ZH (2003) Biosens Bioelectron 18:335–343CrossRefGoogle Scholar
  13. 13.
    Wang L, Wang EK (2004) Electrochem Commun 6:225–229CrossRefGoogle Scholar
  14. 14.
    Chen XH, Ruan CM, Kong JL, Deng JQ (2000) Anal Chim Acta 412:89–98CrossRefGoogle Scholar
  15. 15.
    Song YH, Wang L, Ren CB, Zhu GY, Li Z (2006) Sens Actuators B 114:1001–1006CrossRefGoogle Scholar
  16. 16.
    Holmlin RE, Dandliker PJ, Barton JK (1997) Angew Chem Int Ed Engl 36:2714–2730CrossRefGoogle Scholar
  17. 17.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefGoogle Scholar
  18. 18.
    Visser AE, Swatloski RP, Rogers RD (2000) Green Chem 2:1–4CrossRefGoogle Scholar
  19. 19.
    Wasserscheid P, Welton T (eds) (2002) Ionic liquids in synthesis. Wiley-VCH, WeinheimGoogle Scholar
  20. 20.
    Anderson JL, Armstrong DW, Wei GT (2006) Anal Chem 78:2892–2902CrossRefGoogle Scholar
  21. 21.
    Maleki N, Safavi A, Tajabadi F (2006) Anal Chem 78:3820–3826CrossRefGoogle Scholar
  22. 22.
    García-Urdiales E, Alfonso I, Gotor V (2005) Chem Rev 105:313–354CrossRefGoogle Scholar
  23. 23.
    Ohno H, Nishimura N (2001) J Electrochem Soc 148:E168–E170CrossRefGoogle Scholar
  24. 24.
    Nishimura N, Ohno H (2002) J Mater Chem 12:2299–2304CrossRefGoogle Scholar
  25. 25.
    Nishimura N, Nomura Y, Nakamura N, Ohno H (2005) Biomaterials 26:5558–5563CrossRefGoogle Scholar
  26. 26.
    Park S, Kazlauskas RJ (2003) Curr Opin Biotechnol 14:432–437CrossRefGoogle Scholar
  27. 27.
    Kim KW, Song B, Choi MY, Kim MJ (2001) Org Lett 3:1507–1509CrossRefGoogle Scholar
  28. 28.
    Rantwijk FV, Lau RM, Sheldon RA (2003) Trends Biotechnol 21:131–138CrossRefGoogle Scholar
  29. 29.
    Kragl U, Eckstein M, Kaftzik N (2002) Curr Opin Biotechnol 13:565–571CrossRefGoogle Scholar
  30. 30.
    Okrasa K, Guibé-Jampel E, Therisod M (2003) Tetrahedron Asymmetry 14:2478–2490CrossRefGoogle Scholar
  31. 31.
    Machado MF, Saraiva JM (2005) Biothchnol Lett 27:1233–1239CrossRefGoogle Scholar
  32. 32.
    Tang JL, Jiang JG, Song YH, Peng ZQ, Wu ZY, Dong SJ, Wang EK (2002) Chem Phys Lipids 120:119–129CrossRefGoogle Scholar
  33. 33.
    Jia NQ, Zhou Q, Liu L, Yan MM, Jiang ZY (2005) J Electroanal Chem 580:213–221CrossRefGoogle Scholar
  34. 34.
    Bond AM (ed) (1980) Modern polarographic methods in analytical chemistry. Dekker, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Cunlan Guo
    • 1
  • Yonghai Song
    • 1
  • Hui Wei
    • 1
  • Peicai Li
    • 1
  • Li Wang
    • 1
  • Lanlan Sun
    • 1
  • Yujing Sun
    • 1
  • Zhuang Li
    • 1
  1. 1.State Key Laboratory of Electroanalytical ChemistryGraduate School of the Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina

Personalised recommendations