Analytical and Bioanalytical Chemistry

, Volume 389, Issue 5, pp 1341–1363

FTICR-MS applications for the structure determination of natural products

Review

Abstract

Natural products are a source of unique chemical entities with specific biological activities of great value to the pharmaceutical industry. However, the determination of unknown structures is usually time consuming and often becomes a bottleneck in the effort to develop natural products into effective drugs. The high-performance features of high magnetic field FTMS have greatly alleviated the structural elucidation bottleneck to meet increasingly shorter discovery timelines for drug candidates based on natural products. The high-performance features of high field FTMS include unsurpassed mass measurement accuracy for elemental formula determination, ultra-high mass resolution for component separation, the ability to perform multiple levels of tandem mass spectrometry for structural elucidation, and moderate sensitivity for limited supply of isolates. A number of applications utilizing these properties of FTMS have been reported recently for the structural elucidation of novel natural product structures originating from terrestrial and marine microorganisms. In this review, FTMS methods and their applications for the structural elucidation and characterization of natural products will be reviewed.

Figure

Molecular structure and positive ion mode nanoelectrospray FTICR mass spectrum of methylspirastrellolide A (3). The inset shows the isotopic distribution with high abundance of the A + 2 peak, but less than the abundance of the A + 1 peak. The resolved isotopic fine structure of the A + 2 peak reveals the presence of one chlorine atom based on accurate mass assignment and the measured abundance ratio between the resolved 37Cl peak and the monoisotopic peak

Keywords

FTICR-MS Natural products Structure elucidation High resolution Accurate mass 

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Chemical and Screening SciencesWyeth ResearchPearl RiverUSA

Personalised recommendations