Skip to main content
Log in

Pipette tip solid-phase extraction and gas chromatography – mass spectrometry for the determination of methamphetamine and amphetamine in human whole blood

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Methamphetamine and amphetamine were extracted from human whole blood samples using pipette tip solid-phase extraction (SPE) with MonoTip C18 tips, on which C18-bonded monolithic silica gel was fixed. Human whole blood (0.1 mL) containing methamphetamine and amphetamine, with N-methylbenzylamine as an internal standard, was mixed with 0.4 mL of distilled water and 50 μL of 5 M sodium hydroxide solution. After centrifugation, the supernatant was extracted to the C18 phase of the tip (pipette tip volume, 200 μL) by 25 repeated aspirating/dispensing cycles using a manual micropipettor. Analytes retained in the C18 phase were eluted with methanol by five repeated aspirating/dispensing cycles. After derivatization with trifluoroacetic anhydride, analytes were measured by gas chromatography – mass spectrometry with selected ion monitoring in the positive-ion electron impact mode. Recoveries of methamphetamine and amphetamine spiked into whole blood were more than 87.6 and 81.7%, respectively. Regression equations for methamphetamine and amphetamine showed excellent linearity in the range of 0.5–100 ng/0.1 mL. The limits of detection for methamphetamine and amphetamine were 0.15 and 0.11 ng/0.1 mL, respectively. Intra- and interday coefficients of variation for both stimulants were not greater than 9.6 and 13.8%, respectively. The determination of methamphetamine and amphetamine in autopsy whole blood samples is presented, and was shown to validate the present methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bar AM, Panenka WJ, MacEwan W, Thornton AE, Lang DJ, Honer WG, Lecomte T (2006) J Psychiatr Neurosci 31:301–313

    Google Scholar 

  2. Takayasu T, Ohshima T, Nishigami J, Kondo T, Nagano T (1995) J Clin Forensic Med 2:25–33

    Article  CAS  Google Scholar 

  3. Sato M, Mitsui T (1997) J Pharm Biomed Anal 16:139–145

    Article  CAS  Google Scholar 

  4. Kumazawa T, Watanabe-Suzuki K, Seno H, Ishii A, Suzuki O (2000) Legal Med 2:181–185

    Article  CAS  Google Scholar 

  5. Okajima K, Namera A, Yashiki M, Tsukue I, Kojima T (2001) Forensic Sci Int 116:15–22

    Article  CAS  Google Scholar 

  6. Ishigami A, Kubo S, Gotohda T, Tokunaga I (2003) J Med Invest 50:112–116

    Google Scholar 

  7. Ago M, Ago K, Hara K, Kashimura S, Ogata M (2006) Legal Med 8:235–239

    Article  CAS  Google Scholar 

  8. Nishida M, Yashiki M, Namera A, Kimura K (2006) J Chromatogr B 842:106–110

    Article  CAS  Google Scholar 

  9. Lambert WE, Meyer E, De Leenheer AP (1995) J Anal Toxicol 19:73–78

    CAS  Google Scholar 

  10. Marquet P, Lacassie E, Battu C, Faubert H, Lachâtre G (1997) J Chromatogr B 700:77–82

    Article  CAS  Google Scholar 

  11. Kupiec T, DeCicco L, Spiehler V, Sneed G, Kemp P (2002) J Anal Toxicol 26:513–518

    CAS  Google Scholar 

  12. Boatto G, Faedda MV, Pau A, Asproni B, Menconi S, Cerri R (2002) J Pharm Biomed Anal 29:1073–1080

    Article  CAS  Google Scholar 

  13. Kumazawa T, Sato K, Seno H, Suzuki O (1993) Jpn J Legal Med (Nihon Hoigaku Zasshi) 47:129–133

    CAS  Google Scholar 

  14. Zweipfenning PGM, Wilderink AHCH, Horsthuis P, Franke J-P, de Zeeuw RA (1994) J Chromatogr A 674:87–95

    Article  CAS  Google Scholar 

  15. Hara K, Kashimura S, Hieda Y, Kageura M (1997) J Anal Toxicol 21:54–58

    CAS  Google Scholar 

  16. Namera A, Yashiki M, Liu J, Okajima K, Hara K, Imamura T, Kojima T (2000) Forensic Sci Int 109:215–223

    Article  CAS  Google Scholar 

  17. Nagawasa N, Yashiki M, Iwasaki Y, Hara K, Kojima T (1996) Forensic Sci Int 78:95–102

    Article  Google Scholar 

  18. van Vliet C, Swean GM, Slangen JJ, De Boorder T, Sturmans F (1987) Int Arch Occup Environ Health 59:493–501

    Article  Google Scholar 

  19. Fujimaki K, Lee X-P, Kumazawa T, Sato J, Sato K (2006) Forensic Toxicol 24:8–16

    Article  CAS  Google Scholar 

  20. Pluskal MG, Bogdanova A, Lopez M, Gutierrez S, Pitt AM (2002) Proteomics 2:145–150

    Article  CAS  Google Scholar 

  21. Keough T, Lacey MP, Youngquist RS (2002) Rapid Commun Mass Spectrom 16:1003–1015

    Article  CAS  Google Scholar 

  22. Tannu NS, Wu J, Rao VK, Gadgil HS, Pabst MJ, Gerling IC, Raghow R (2004) Anal Biochem 327:222–232

    Article  CAS  Google Scholar 

  23. Šalplachta J, Řehulka P, Chmelík J (2004) J Mass Spectrom 39:1395–1401

    Article  Google Scholar 

  24. Majors RE, Shukla A (2005) Micropipette tip-based sample preparation for bioanalysis. LC–GC N Am, 1 July (see http://www.lcgcmag.com/lcgc/, cited 3 July 2007)

  25. Palmblad M, Vogel JS (2005) J Chromatogr B 814:309–313

    Article  CAS  Google Scholar 

  26. Li G, Hu R, Kamijo Y, Nakajima T, Aoyama T, Inoue T, Node K, Kannagi R, Kyogashima M, Hara A (2007) Anal Biochem 362:1–7

    Article  CAS  Google Scholar 

  27. Miyazaki S, Morisato K, Ishizuka N, Minakuchi H, Shintani Y, Furuno M, Nakanishi K (2004) J Chromatogr A 1043:19–25

    Article  CAS  Google Scholar 

  28. Hasegawa C, Kumazawa T, Lee X-P, Fujishiro M, Kuriki A, Marumo A, Seno H, Sato K (2006) Rapid Commun Mass Spectrom 20:537–543

    Article  CAS  Google Scholar 

  29. Kumazawa T, Hasegawa C, Lee X-P, Marumo A, Shimmen N, Ishii A, Seno H, Sato K (2006) Talanta 70:474–478

    Article  CAS  Google Scholar 

  30. Kumazawa T, Hasegawa C, Lee X-P, Hara K, Seno H, Suzuki O, Sato K (2007) J Pharm Biomed Anal 44:602–607

    Google Scholar 

  31. Shen JX, Tama CI, Hayes RN (2006) J Chromatogr B 843:275–282

    Article  CAS  Google Scholar 

  32. Campíns-Falcó P, Sevillano-Cabeza A, Molíns-Legua C, Kohlmann M (1996) J Chromatogr B 687:239–246

    Google Scholar 

  33. Margalho C, de Boer D, Gallardo E, Barroso M, Vieira DN (2005) J Anal Toxicol 29:309–313

    CAS  Google Scholar 

  34. Sánchez de la Torre C, Martínez MA, Almarza E (2005) Forensic Sci Int 155:193–204

    Article  Google Scholar 

  35. Huang Z, Zhang S (2003) J Chromatogr B 792:241–247

    Article  CAS  Google Scholar 

  36. Suzuki O, Kumazawa T, Seno H, Hattori H (1989) Med Sci Law 29:242–247

    CAS  Google Scholar 

  37. Marumo A, Kumazawa T, Lee X-P, Fujimaki K, Kuriki A, Hasegawa C, Sato K, Seno H, Suzuki O (2005) J AOAC Int 88:1655–1660

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant-in-aid from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kumazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, C., Kumazawa, T., Lee, XP. et al. Pipette tip solid-phase extraction and gas chromatography – mass spectrometry for the determination of methamphetamine and amphetamine in human whole blood. Anal Bioanal Chem 389, 563–570 (2007). https://doi.org/10.1007/s00216-007-1460-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1460-3

Keywords

Navigation