Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 619–630 | Cite as

Response surface methodology for the microwave-assisted extraction of insecticides from soil samples

  • M. Carmen Hernández-Soriano
  • Aránzazu Peña
  • M. Dolores Mingorance
Original Paper


The extraction of two pyrethroid insecticides (deltamethrin and α-cypermethrin) together with three organophosphorus insecticides (dimethoate, diazinon and malathion) from soil samples was carried out with microwave-assisted technology. Experimental designs showed that extraction temperature, addition of water to the extractant and solvent/soil ratio were the variables that affected the recoveries of the pesticide the most. Response surface methodology was applied to find the optimum values of the variables involved in the extractions of the analytes. In addition, in order to achieve near-optimal extraction conditions, a desirability function was used to optimize the five pesticides simultaneously. The optimized conditions were applied to different types of soils.


Microwave-assisted extraction Soil samples Pyrethroid pesticides Organophosphorous pesticides Box–Behnken design Desirability function 



Box–Behnken design


cation exchange capacity


desirability function


partial desirability function


microwave-assisted extraction


organic carbon


probability level




prediction coefficient


determination coefficient


ramp time


relative standard deviation


response surface methodology


solvent/soil ratio


soil sample


hold time




additional water



MCHS is grateful for the grant received from the Avenzoar Foundation. R. Phan-Tan-Luu is acknowledged for kindly providing the statistical package, Nemrod W. This work was partially financed by a national project from CICYT (ref. CGL2006-0544/HID).


  1. 1.
    Gonçalves C, Alpendurada MF (2005) Talanta 65:1179–1189CrossRefGoogle Scholar
  2. 2.
    Ali MA, Baugh PJ (2003) Int J Environ Anal Chem 83:909–922CrossRefGoogle Scholar
  3. 3.
    Edwards CA (2000) In: Rechcigl JE, Rechcigl NA (eds) Insect pest management: techniques for environmental protection. CRC Press, Boca Raton, FL, p 103Google Scholar
  4. 4.
    Sánchez L, Mingorance MD, Peña A (2004) Anal Bioanal Chem 378:764–769CrossRefGoogle Scholar
  5. 5.
    Sánchez L, Mingorance MD, Peña A (2000) Analyst 125:1199–1203CrossRefGoogle Scholar
  6. 6.
    Esteve-Turrillas FA, Aman CS, Pastor A, de la Guardia M (2004) Anal Chim Acta 522:73–78CrossRefGoogle Scholar
  7. 7.
    Fuentes E, Báez ME, Reyes D (2006) Anal Chim Acta 578:122–130CrossRefGoogle Scholar
  8. 8.
    Gan J, Papiernik SK, Koskinen WC, Yates SR (1999) Environ Sci Technol 33:3249–3253CrossRefGoogle Scholar
  9. 9.
    Berglöf T, Koskinen WC, Kylin H, Moorman TB (2000) Pest Manage Sci 56:927–931CrossRefGoogle Scholar
  10. 10.
    Sun L, Lee HK (2003) J Chromatogr A 1014:165–177CrossRefGoogle Scholar
  11. 11.
    Castro J, Sánchez-Brunete C, Tadeo JL (2001) J Chromatogr A 918:371–380CrossRefGoogle Scholar
  12. 12.
    Peña A, Ruano F, Mingorance MD (2006) Anal Bioanal Chem 385:918–925CrossRefGoogle Scholar
  13. 13.
    Lewis G, Mathieu D, Phan-Tan-Luu R (eds) (1999) Pharmaceutical experimental design. Marcel Dekker, New YorkGoogle Scholar
  14. 14.
    Myers RH, Montgomery D (eds)(2002) Response surface methodology. Wiley, New YorkGoogle Scholar
  15. 15.
    Deming SN, Morgan SL (eds)(1987) Experimental design: a chemometric approach. Elsevier, New YorkGoogle Scholar
  16. 16.
    Baker TB (ed)(1994) Quality by experimental design, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  17. 17.
    Gfrerer M, Lankmayr E (2005) Anal Chim Acta 533:203–211CrossRefGoogle Scholar
  18. 18.
    Derringer G, Suich R (1980) J Qual Technol 12:214–219Google Scholar
  19. 19.
    Harrington EC (1965) Ind Qual Control 21:494–498Google Scholar
  20. 20.
    Gosh S (ed)(1990) Statistical design and analysis of industrial experiments. Marcel Dekker, New YorkGoogle Scholar
  21. 21.
    García I, Sarabia L, Ortiz MC, Aldama JM (2005) J Chromatogr A 1085:190–198CrossRefGoogle Scholar
  22. 22.
    Pizarro C, Gónzalez-Sáiz JM, Pérez-del-Notario N (2006) J Chromatogr A 1132:8–14CrossRefGoogle Scholar
  23. 23.
    Ortiz MC, Herrero A, Sanllorente S, Reguera C (2005) Talanta 65:246–254Google Scholar
  24. 24.
    Pasamontes A, Callao MP (2006) Talanta 68:1617–1622CrossRefGoogle Scholar
  25. 25.
    Candioti LV, Robles JC, Mantovani VE, Goicoechea HC (2006) Talanta 69:140–147CrossRefGoogle Scholar
  26. 26.
    Ragonese R, Macka M, Hughes J, Petocz P (2002) J Pharmaceut Biomed Anal 27:995–1007CrossRefGoogle Scholar
  27. 27.
    Ferreira SLC, dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Talanta 63:1061–1067CrossRefGoogle Scholar
  28. 28.
    Stafiej A, Pyrzynska K, Ranz A, Lankmayr E (2006) J Biochem Bioph Meth 69:15–24CrossRefGoogle Scholar
  29. 29.
    Soil Conservation Service (1972) Soil survey laboratory methods and procedures for collecting samples. USDA, Washington, DCGoogle Scholar
  30. 30.
    Mingorance MD, Barahona E, Fernández Gálvez J (2007) Chemosphere 68:409–413CrossRefGoogle Scholar
  31. 31.
    Barahona E, Cadahía C, Casado M, Chaves M, Gárate A, Heras L, Lachica M, Lasala M, Llorca R, Montañés L, Pardo MT, Pérez V, Prat L, Romero M, Sánchez B (1984) In: Proc I Congreso Nacional de la Ciencia del Suelo, Madrid, Spain, p 53Google Scholar
  32. 32.
    Meier LP, Kahr G (1999) Clays Clay Miner 47:386–388CrossRefGoogle Scholar
  33. 33.
    Tomlin CDS (ed)(2003) The Pesticide Manual, 13th edn. British Crop Protection Council, Alton, UKGoogle Scholar
  34. 34.
    Cuadros Rodríguez L, García Campaña A, Jiménez Linares C, Román Ceba M (1993) Anal Lett 26:1243–1258Google Scholar
  35. 35.
    Jassie L, Revesz R, Kierstead T, Hasty E, Matz S (1997) In: Kingston HM, Haswell SJ (eds) Microwave-enhanced chemistry. ACS, Washington, DCGoogle Scholar
  36. 36.
    Montgomery DC (ed) (2000) Design and analysis of experiments, 5th edn. Wiley, New YorkGoogle Scholar
  37. 37.
    de Andréa MM, Papini S, Nakagawa LE (2001) J Environ Sci Health B 36:87–93CrossRefGoogle Scholar
  38. 38.
    Xiong G, Tang B, He X, Zhao M, Zhang Z, Zhang Z (1999) Talanta 48:333–339CrossRefGoogle Scholar
  39. 39.
    Bouaid A, Martín-Esteban A, Fernández P, Cámara C (2000) Fresenius J Anal Chem 367:291–294CrossRefGoogle Scholar
  40. 40.
    Oldal B, Maloshik E, Uzinger N, Antón A, Székács A (2006) Geoderma 135:163–178CrossRefGoogle Scholar
  41. 41.
    Papadakis EN, Vryzas Z, Papadopoulou-Mourkidou E (2006) J Chromatogr A 1127:6–11CrossRefGoogle Scholar
  42. 42.
    Font N, Hernández F, Hogendoorn EA, Baumann RA, van Zoonen P (1998) J Chromatogr A 798:179–186CrossRefGoogle Scholar
  43. 43.
    Molins C, Hogendoorn EA, Dijkman E, Heusinkveld HAG, Baumann RA (2000) J Chromatogr A 869:487–496CrossRefGoogle Scholar
  44. 44.
    Hernández-Soriano MC, Peña A, Mingorance MD (2007) Sci Total Environ 378:109–113CrossRefGoogle Scholar
  45. 45.
    Koivistoinen P, Könönen M, Karinpää A, Roine P (1964) Agric Food Chem 12:557–560CrossRefGoogle Scholar
  46. 46.
    Sanusi A, Guillet V, Montury M (2004) J Chromatogr A 1046:35–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Carmen Hernández-Soriano
    • 1
  • Aránzazu Peña
    • 1
  • M. Dolores Mingorance
    • 1
  1. 1.Departamento de Ciencias de la Tierra y Química AmbientalEstación Experimental del Zaidín (CSIC)GranadaSpain

Personalised recommendations