Advertisement

Analytical and Bioanalytical Chemistry

, Volume 388, Issue 8, pp 1897–1905 | Cite as

Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in paintings

  • Austin Nevin
  • Daniela Comelli
  • Gianluca Valentini
  • Demetrios Anglos
  • Aviva Burnstock
  • Sharon Cather
  • Rinaldo Cubeddu
Original Paper

Abstract

The differentiation of proteins commonly found as binding media in paintings is presented based on spectrally resolved and time-resolved laser-induced fluorescence (LIF) and total emission spectroscopy. Proteins from eggs and animal glue were analysed with pulsed laser excitation at 248 nm (KrF excimer) and 355 nm (third harmonic of Nd:YAG) for spectrally resolved measurements, and at 337 nm (N2) and 405 nm (N2 pumped dye laser) for spectrally resolved lifetime measurements and fluorescence lifetime imaging (FLIM). Total emission spectra of binding media are used for the interpretation of LIF spectra. Time-resolved techniques become decisive with excitation at longer wavelengths as fluorescence lifetime permits the discrimination amongst binding media, despite minimal spectral differences; spectrally resolved measurements of fluorescence lifetime have maximum differences between the binding media examined using excitation at 337 nm, with maximum observed fluorescence at 410 nm. FLIM, which measures the average lifetime of the emissions detected, can also differentiate between media, is non-invasive and is potentially advantageous for the analysis of paintings.

Figure

The fluorescence of solid ox glue extracted from collagen can be visualised in this Total Fluorescence Spectrum; three different peaks from multiple fluorophores are present and allow the discrimination between collagen- and non-collagen proteinaceous binding media found in paintings

Keywords

Proteins Fluorescence Lifetime Laser-induced fluorescence Fluorescence lifetime imaging Binding media Paintings 

Notes

Acknowledgements

A.N. was supported by a Marie Curie Early Stage Training Fellowship through the ATHENA Project (MEST-CT-2004-504067) funded by the European Commission. The work at CUSBO was supported in part by the European Commission through the Research Infrastructures activity of FP6 (Laserlab-Europe RII3-CT-2003-506350).

References

  1. 1.
    Colombini MP, Modugno F (2004) J Sep Sci 27:147–160CrossRefGoogle Scholar
  2. 2.
    Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E (2006) Anal Chem 78:4490–4500CrossRefGoogle Scholar
  3. 3.
    Tokarski C, Martin E, Rolando C, Cren-Olive C (2006) Anal Chem 78:1494–1502CrossRefGoogle Scholar
  4. 4.
    Fabbri M, Picollo M, Porcinai S, Bacci M (2001) Appl Spectrosc 55:428–433CrossRefGoogle Scholar
  5. 5.
    Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Anal Chim Acta 407:261–274CrossRefGoogle Scholar
  6. 6.
    Ladhokin A (2000) In: Meyers R (ed) Encyclopedia of analytical chemistry. Wiley, ChichesterGoogle Scholar
  7. 7.
    Davies MJ, Fu S, Wang H, Dean RT (1999) Free Radic Biol Med 27:1151–1163CrossRefGoogle Scholar
  8. 8.
    Karoui R, Martin B, Dufour E (2005) Lait 85:223–236CrossRefGoogle Scholar
  9. 9.
    Karoui R, Kemps B, Bamelis F, De Ketelaere B, Merten K, Schoonheydt R, Decuypere E, De Baerdemaeker J (2006) Eur Food Res Technol 223:180–188CrossRefGoogle Scholar
  10. 10.
    Larson L, Shin K, Zink J (1991) J Am Inst Conserv 30:89–104CrossRefGoogle Scholar
  11. 11.
    Miliani C, Favaro G, Romani A (1998) Spectrochim Acta A 54:581–588CrossRefGoogle Scholar
  12. 12.
    Miyoshi T (1987) Jpn J Appl Phys 4:627–630Google Scholar
  13. 13.
    Miyoshi T (1990) Jpn J Appl Phys 29:1727–1728CrossRefGoogle Scholar
  14. 14.
    de la Rie ER (1982) Stud Conserv 27:1–7CrossRefGoogle Scholar
  15. 15.
    Anglos D, Solomidou M, Zergioti I, Zafiropulos V, Papazoglou TG, Fotakis C (1996) Appl Spectrosc 50:1331–1334CrossRefGoogle Scholar
  16. 16.
    Nevin A, Cather S, Anglos D, Fotakis C (2006) Anal Chim Acta 573:341–346CrossRefGoogle Scholar
  17. 17.
    Deyl Z, Miksik I, Zicha J (1999) J Chromatogr A 836:161–171CrossRefGoogle Scholar
  18. 18.
    Andersen CM, Bro R (2003) J Chemom 200–215Google Scholar
  19. 19.
    Sikorska E, Gliszczynska-Swiglo A, Khmelinskii I, Sikorski M (2005) J Agric Food Chem 53:6988–6994CrossRefGoogle Scholar
  20. 20.
    Nevin A, Anglos D (2006) Laser Chem DOI  10.1155/2006/82823
  21. 21.
    Engelborghs Y (2003) J Fluoresc 13:9–16CrossRefGoogle Scholar
  22. 22.
    Siegel J, Elson DS, Webb SED, Parsons-Karavassilis D, Lévêque-Fort S, Cole MJ, Lever MJ, French PMW, Neil MAA, Juskaitis R, Sucharov LO, Wilson T (2001) Opt Lett 26:1338–1340Google Scholar
  23. 23.
    Comelli D, D’Andrea C, Valentini G, Cubeddu R, Colombo C, Toniolo L (2004) Appl Opt 43:2175–2183CrossRefGoogle Scholar
  24. 24.
    Comelli D, Valentini G, Cubeddu R, Toniolo L (2005) Appl Spectrosc 59:1174–1181CrossRefGoogle Scholar
  25. 25.
    Taroni P, Valentini G, Comelli D, D’Andrea C, Cubeddu R, Hu DN, Roberts JE (2005) Photochem Photobiol 81:524–528CrossRefGoogle Scholar
  26. 26.
    Ceninni C (1960) The craftsman’s handbook: translation of Il libro dell’arte, Thomson, D (trans). Dover, MineolaGoogle Scholar
  27. 27.
    Tagami U, Akashi S, Mizukoshi T, Suzuki E, Hirayama K (2000) J Mass Spectrom 35:131–138CrossRefGoogle Scholar
  28. 28.
    Campbell L, Raikos V, Euston SR (2003) Nahrung 47:369–376CrossRefGoogle Scholar
  29. 29.
    Thorpe SR, Baynes JW (2003) Amino Acids 25:275–281CrossRefGoogle Scholar
  30. 30.
    Edwards AM, Silva E (2001) J Photochem Photobio B 63:126–131CrossRefGoogle Scholar
  31. 31.
    van den Brink OF, Boon JJ, O’Connor PB, Duursma MC, Heeren RM (2001) J Mass Spectrom 36:479–492CrossRefGoogle Scholar
  32. 32.
    Reubsaet JL, Beijnen JH, Bult A, van Maanen RJ, Daniëlle Marchal JA, Underberg WJ (1998) J Pharm Biomed Anal 17:955–978CrossRefGoogle Scholar
  33. 33.
    Giulivi C, Traaseth NJ, Davies KJA (2003) Amino Acids 25:227–232CrossRefGoogle Scholar
  34. 34.
    Ali F, Barnham K, Barrow C, Separovic F (2004) J Inorg Biochem 98:173–184CrossRefGoogle Scholar
  35. 35.
    Hustad S, Ueland PM, Schneede J (1999) Clin Chem 45:862–868Google Scholar
  36. 36.
    Miyoshi T (1985) Jpn J Appl Phys 24:371–372CrossRefGoogle Scholar
  37. 37.
    Van Gilst M, Hudson BS (1996) Biophys Chem 63:17–25CrossRefGoogle Scholar
  38. 38.
    Formoso C, Forster L (1975) J Biol Chem 250:3738–3745Google Scholar
  39. 39.
    Kungl AJ, Breitenbach M, Kauffmann HF (1994) Biochim Biophys Acta 1201:345–352Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Austin Nevin
    • 1
    • 2
  • Daniela Comelli
    • 3
  • Gianluca Valentini
    • 3
  • Demetrios Anglos
    • 1
  • Aviva Burnstock
    • 2
  • Sharon Cather
    • 2
  • Rinaldo Cubeddu
    • 3
  1. 1.Institute of Electronic Structure and LaserFoundation for Research and Technology Hellas (IESL-FORTH)HeraklionGreece
  2. 2.Courtauld Institute of ArtUniversity of LondonLondonUK
  3. 3.ULTRAS-CNR-INFM and IFN-CNR, Politecnico di Milano, Dipartimento di FisicaMilanItaly

Personalised recommendations