Analytical and Bioanalytical Chemistry

, Volume 388, Issue 8, pp 1707–1716 | Cite as

On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR

  • Albert K. Korir
  • Cynthia K. Larive
Original Paper


The isolation and purification of sufficient quantities of heparin-derived oligosaccharides for characterization by NMR is a tedious and time-consuming process. In addition, the structural complexity and microheterogeneity of heparin makes its characterization a challenging task. The improved mass-sensitivity of microcoil NMR probe technology makes this technique well suited for characterization of mass-limited heparin-derived oligosaccharides. Although microcoil probes have poorer concentration sensitivity than conventional NMR probes, this limitation can be overcome by coupling capillary isotachophoresis (cITP) with on-line microcoil NMR detection (cITP-NMR). Strategies to improve the sensitivity of on-line NMR detection through changes in probe design and in the cITP-NMR experimental protocol are discussed. These improvements in sensitivity allow acquisition of cITP-NMR survey spectra facilitating tentative identification of unknown oligosaccharides. Complete structure elucidation for microgram quantities of the purified material can be carried out through acquisition of 2D NMR spectra using a CapNMR microcoil probe.

Survey NMR spectrum obtained by cITP-NMR using a second-generation probe (the microcoil of which is shown) facilitates tentative identification of unknown oligosaccharides (e.g., the heparin-derived tetrasaccharide illustrated)


Heparin Microcoil NMR Capillary isotachophoresis Glycosaminoglycans Structure elucidation 



C. K. L. gratefully acknowledges financial support from the National Science Foundation grant CHE-0616811 and the University of California Cancer Research Coordinating Committee grant 5-441096-34384. The authors thank Professors Andrew G. Webb and Jonathan V. Sweedler and their associates for their assistance in the design and construction of the NMR microcoil probes used in this research. The authors also thank Professor Dallas Rabenstein and Khahn Nguyen for the gift of the heparin tetrasaccharide used in this work.


  1. 1.
    Casu B (1989) Heparin: chemical and biological properties, clinical applications. CRC, Boca Raton, FloridaGoogle Scholar
  2. 2.
    Gallagher JT, Lyon M, Steward WP (1986) Biochem J 236:313–325Google Scholar
  3. 3.
    Liu DF, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R (2002) Proc Natl Acad Sci USA 99:568–573CrossRefGoogle Scholar
  4. 4.
    Chuang W, Christ MD, Peng J, Rabenstein DL (2000) Biochem 39:3542–3555CrossRefGoogle Scholar
  5. 5.
    Hari SP, McAllister H, Chuang W-L, Christ MD, Rabenstein DL (2000) Biochem 39:3763–3773CrossRefGoogle Scholar
  6. 6.
    Chuang W, Christ MD, Rabenstein DL (2001) Anal Chem 73:2310–2316CrossRefGoogle Scholar
  7. 7.
    Long HW, Gaede HC, Shore J, Reven L, Bowers CR, Kritzenberger J, Pietrass T, Pines A, Tang P, Reimer JA (1993) J Am Chem Soc 115:8491–8492CrossRefGoogle Scholar
  8. 8.
    Spraul M, Freund AS, Nast RE, Withers RS, Maas WE, Corcoran O (2003) Anal Chem 75:1536–1541CrossRefGoogle Scholar
  9. 9.
    Olson DL, Peck TL, Webb A, Magin RL, Sweedler JV (1995) Science 270:1967–1970CrossRefGoogle Scholar
  10. 10.
    Shroeder FC, Gronquist M (2006) Angew Chem Int Ed 45:7122–7131CrossRefGoogle Scholar
  11. 11.
    Kautz RA, Lacey ME, Wolters AM, Foret F, Webb AG, Karger BL, Sweedler JV (2001) J Am Chem Soc 123:3159–3160CrossRefGoogle Scholar
  12. 12.
    Bocek P, Deml L, Gebauer P, Dolnik V (1988) Analytical isotachophoresis. VCH, New YorkGoogle Scholar
  13. 13.
    Almeida VK, Larive CK (2005) Magn Reson Chem 43:755–761CrossRefGoogle Scholar
  14. 14.
    Jayawickrama DA, Sweedler JV (2004) Anal Bioanal Chem 378:1528–1535CrossRefGoogle Scholar
  15. 15.
    Wolters AM, Jayawickrama DA, Larive CK, Sweedler JV (2002) Anal Chem 74:2306–2313CrossRefGoogle Scholar
  16. 16.
    Wolters AM, Jayawickrama DA, Larive CK, Sweedler JV (2002) Anal Chem 74:4191–4197CrossRefGoogle Scholar
  17. 17.
    Wolters AM, Jayawickrama DA, Sweedler JV (2002) Curr Opin Chem Biol 6:711–716CrossRefGoogle Scholar
  18. 18.
    Wolters AM, Jayawickrama DA, Sweedler JV (2005) J Nat Prod 68:162–167CrossRefGoogle Scholar
  19. 19.
    Korir AK, Almeida VK, Malkin DS, Larive CK (2005) Anal Chem 77:5998–6003CrossRefGoogle Scholar
  20. 20.
    Chuang W, McAllister H, Rabenstein DL (2001) J Chromatogr A 932:65–74CrossRefGoogle Scholar
  21. 21.
    Olson DL, Lacey ME, Sweedler JV (1998) Anal Chem 70:645–650CrossRefGoogle Scholar
  22. 22.
    Subramanian R, Lam MM, Webb AG (1998) J Magn Reson 133:227–231CrossRefGoogle Scholar
  23. 23.
    Cho Z, Ahn C, Juh S, Lee H (1988) Med Phys 15:815–824CrossRefGoogle Scholar
  24. 24.
    Webb AG (1997) Prog Nucl Magn Reson Spectrosc 31:1–42CrossRefGoogle Scholar
  25. 25.
    Hoult DI, Lauterbur PC (1979) J Magn Reson 34:425–433Google Scholar
  26. 26.
    Olson DL, Lacey ME, Webb AG, Sweedler JV (1999) Anal Chem 71:3070–3076CrossRefGoogle Scholar
  27. 27.
    Korir AK (2006) PhD Dissertation, University of Kansas, Lawrence, KansasGoogle Scholar
  28. 28.
    Korir AK, Almeida VK, Larive CK (2006) Anal Chem 78:7078–7087CrossRefGoogle Scholar
  29. 29.
    Olson DL, Norcoss J, O’Neil-Johnson M, Molitor PF, Detlefsen DJ, Wilson AG, Peck TL (2004) Anal Chem 76:2966–2974CrossRefGoogle Scholar
  30. 30.
    Yamada S, Murakami T, Tsuda H, Yoshida K, Sugahara K (1995) J Biol Chem 270:8696–8705CrossRefGoogle Scholar
  31. 31.
    Horne A, Gettins P (1992) Carbohydr Res 225:43–57CrossRefGoogle Scholar
  32. 32.
    Linker A, Hovingh P (1984) Carbohydr Res 127:75–94CrossRefGoogle Scholar
  33. 33.
    Merchant ZM, Kim YS, Rice KG, Linhardt RJ (1985) Biochem J 229:369–377Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations