Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 369–376 | Cite as

Molecularly imprinted beads by surface imprinting

  • Chau Jin Tan
  • Yen Wah TongEmail author


Molecular imprinting is a state-of-the-art technique for imparting molecular recognition properties to a synthetic polymeric matrix. Conventionally, the technique is easily carried out using bulk imprinting, where molecularly imprinted polymers (MIPs) are prepared in large chunks and post-treatment processes like grinding and sieving are then required. However, this strategy tends to produce sharp-edged, irregular MIP bits with a limited scope of direct application. In addition, due to the creation of binding sites within the polymeric bulk, the issue of the hindrance of adsorbate diffusion (especially in the case of macromolecules) during template rebinding makes the MIPs prepared through this approach unsuitable for practical applications. Thus over the years, many efforts to address the limitations of conventional molecular imprinting techniques have resulted in new imprinting methodologies. Systems like suspension and precipitation polymerization, where MIPs with tunable morphologies can be prepared, have been developed. Additionally, strategies like surface imprinting have also been employed. Ultimately, both of these approaches have been combined to prepare regularly shaped surface-imprinted MIP beads. Such an approach incorporates the advantages of both methodologies at the same time. Given their desirable physical morphologies and favorable adsorption kinetics, MIPs prepared in this manner show significant promise for industrial applications. Therefore, they will be the main focus of this review.


Molecular imprinting Surface imprinting Beads Polymerization Core–shell Emulsion 


  1. 1.
    Nicholls IA, Rosengren JP (2002) Bioseparation 10:301–305CrossRefGoogle Scholar
  2. 2.
    Whitcombe MJ, Vulfson EN (2001) Adv Mater 13:467–478CrossRefGoogle Scholar
  3. 3.
    Lei Y, Mosbach K (2001) J Incl Phenom Macro 41:107–113CrossRefGoogle Scholar
  4. 4.
    Ramström O, Ansell RJ (1998) Chirality 10:195–209CrossRefGoogle Scholar
  5. 5.
    Quaglia M, Sellergren B, Lorenzi ED (2004) J Chromatogr A 1044:53–66CrossRefGoogle Scholar
  6. 6.
    Nicholls IA, Andersson LI, Mosbach K, Ekberg B (1995) Trends Biotechnol 13:47–51CrossRefGoogle Scholar
  7. 7.
    Kirsch N, Alexander C, Lübke M, Whitcombe MJ, Vulfson EN (2000) Polym 41:5583–5590CrossRefGoogle Scholar
  8. 8.
    Sellergren B, Lepistö M, Mosbach K (1988) J Am Chem Soc 110:5853–5860CrossRefGoogle Scholar
  9. 9.
    Andersson HS, Karlsson JG, Piletsky SA, Koch-Schmidt AC, Mosbach K, Nicholls IA (1999) J Chromatogr A 848:39–49CrossRefGoogle Scholar
  10. 10.
    Huang JT, Zhang J, Zhang JQ, Zhang SH (2005) J Appl Polym Sci 95:358–361CrossRefGoogle Scholar
  11. 11.
    Andaç M, Mirel S, Şenel S, Say R, Ersöz A, Denizli A (2007) Int J Biol Macromol 40(2):159–166CrossRefGoogle Scholar
  12. 12.
    Ansell RJ, Mosbach K (1997) J Chromatogr A 787:55–66CrossRefGoogle Scholar
  13. 13.
    Pang X, Cheng G, Lu S, Tang E (2006) Anal Bioanal Chem 384:225–230CrossRefGoogle Scholar
  14. 14.
    Ye L, Weiss R, Mosbach K (2000) Macromolecules 33:8239–8245CrossRefGoogle Scholar
  15. 15.
    Ciardelli G, Cioni B, Cristallini C, Barbani N, Silvestri D, Giusti P (2004) Biosens Bioelectron 20:1083–1090CrossRefGoogle Scholar
  16. 16.
    Spégel P, Schweitz L, Nilsson S (2003) Anal Chem 75:6608–6613CrossRefGoogle Scholar
  17. 17.
    Ciardelli G, Borrelli C, Silvestri D, Cristallini C, Barbani N, Giusti P (2006) Biosens Bioelectron 21:2329–2338CrossRefGoogle Scholar
  18. 18.
    Kudo T, Hosoya K, Watabe Y, Ikegami T, Tanaka N, Sano T, Kaya K (2003) J Chromatogr A 987:389–394CrossRefGoogle Scholar
  19. 19.
    Vaihinger D, Landfester K, Kräuter I, Brunner H, Tovar GEM (2002) Macromol Chem Phys 203:1965–1973CrossRefGoogle Scholar
  20. 20.
    Li Z, Ding J, Day M, Tao Y (2006) Macromolecules 39:2629–2636CrossRefGoogle Scholar
  21. 21.
    Lieberzeit PA, Gazda-Miarecka S, Halikias K, Schirk C, Kauling J, Dickert FL (2005) Sensor Actuat B 111–112:259–263CrossRefGoogle Scholar
  22. 22.
    Piacham T, Josell A, Arwin H, Prachayasittikul V, Ye L (2005) Anal Chim Acta 536:191–196CrossRefGoogle Scholar
  23. 23.
    Li X, Husson SM (2006) Biosens Bioelectron 22:336–348CrossRefGoogle Scholar
  24. 24.
    Tsunemori H, Araki K, Uezu K, Goto M, Furusaki S (2002) Bioseparation 10:315–321CrossRefGoogle Scholar
  25. 25.
    Yoshida M, Uezu K, Goto M, Furusaki S (1999) J Appl Polym Sci 73:1223–1230CrossRefGoogle Scholar
  26. 26.
    Araki K, Yoshida M, Uezu K, Goto M, Furusaki S (2000) J Chem Eng Jpn 33:665–668CrossRefGoogle Scholar
  27. 27.
    Uezu K, Yoshida M, Goto M, Furusaki S (1999) CHEMTECH 29:12–18Google Scholar
  28. 28.
    Toorisaka E, Uezu K, Goto M, Furusaki S (2003) Biochem Eng J 14:85–91CrossRefGoogle Scholar
  29. 29.
    Yoshida M, Uezu K, Goto M, Furusaki S (1999) Macromolecules 32:1237–1243CrossRefGoogle Scholar
  30. 30.
    Kempe M, Glad M, Mosbach K (1995) J Mol Recognit 8:35–39CrossRefGoogle Scholar
  31. 31.
    Yilmaz E, Haupt K, Mosbach K (2000) Angew Chem Int Ed 39:2115–2118CrossRefGoogle Scholar
  32. 32.
    Titirici MM, Sellergren B (2004) Anal Bioanal Chem 378:1913–1921CrossRefGoogle Scholar
  33. 33.
    Rachkov A, Minoura N (2001) Biochim Biophys Acta 1544:255–266Google Scholar
  34. 34.
    Tamayo FG, Titirici MM, Martin-Esteban A, Sellergren B (2005) Anal Chim Acta 542:38–46CrossRefGoogle Scholar
  35. 35.
    Volkmann A, Brüggemann O (2006) React Funct Polym 66:1725–1733CrossRefGoogle Scholar
  36. 36.
    Carter S, Lu S, Rimmer S (2003) Supramol Chem 15:213–220CrossRefGoogle Scholar
  37. 37.
    Pérez-Moral N, Mayes AG (2004) Anal Chim Acta 504:15–21CrossRefGoogle Scholar
  38. 38.
    Carter SR, Rimmer S (2002) Adv Mater 14:667–670CrossRefGoogle Scholar
  39. 39.
    Pérez N, Whitcombe MJ, Vulfson EN (2000) J Appl Polym Sci 77:1851–1859CrossRefGoogle Scholar
  40. 40.
    Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) J Am Chem Soc 117:7105–7111CrossRefGoogle Scholar
  41. 41.
    Pérez N, Whitcombe MJ, Vulfson EN (2001) Macromolecules 34:830–836CrossRefGoogle Scholar
  42. 42.
    Vidyasankar S, Dhal PK, Plunkett SD, Arnold FH (1995) Biotechnol Bioeng 48:431–436CrossRefGoogle Scholar
  43. 43.
    Hirayama K, Sakai Y, Kameoka K (2001) J Appl Polym Sci 81:3378–3387CrossRefGoogle Scholar
  44. 44.
    Matsui T, Osawa T, Shirasaka K, Katayama M, Hishiya T, Asanuma H, Komiyama M (2006) J Incl Phenom Macro 56:39–44CrossRefGoogle Scholar
  45. 45.
    Sulitzky C, Rückert B, Hall AJ, Lanza F, Unger K, Sellergren B (2002) Macromolecules 35:79–91CrossRefGoogle Scholar
  46. 46.
    Fairhurst RE, Chassaing C, Venn RF, Mayes AG (2004) Biosens Bioelectron 20:1098–1105CrossRefGoogle Scholar
  47. 47.
    Rückert B, Kolb U (2005) Micron 36:247–260CrossRefGoogle Scholar
  48. 48.
    Rückert B,Hall AJ, Sellergren B (2002) J Mater Chem 12:2275–2280CrossRefGoogle Scholar
  49. 49.
    Schweitz L (2002) Anal Chem 74:1192–1196CrossRefGoogle Scholar
  50. 50.
    Titirici MM, Sellergren B (2006) Chem Mater 18:1773–1779CrossRefGoogle Scholar
  51. 51.
    Adherne A, Alexander C, Payne MJ, Pérez N, Vulfson EN (1996) J Am Chem Soc 118:8771–8772CrossRefGoogle Scholar
  52. 52.
    Harvey SD, Mong GM, Ozanich RM, Mclean JS, Goodwin SM, Valentine NB, Fredrickson JK (2006) Anal Bioanal Chem 386:211–219CrossRefGoogle Scholar
  53. 53.
    Yoshida M, Hatate Y, Uezu K, Goto M, Furusaki S (2000) J Polym Sci Pol Chem 38:689–696CrossRefGoogle Scholar
  54. 54.
    Moore PN, Puvvada S, Blankschtein D (2003) Langmuir 19:1009–1016CrossRefGoogle Scholar
  55. 55.
    Tan CJ, Tong YW (2007) Langmuir 23:2722–2730Google Scholar
  56. 56.
    Tan CJ, Tong YW (2007) Anal Chem 79:299–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemical & Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Division of BioengineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations