Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 423–431 | Cite as

Investigating the mechanisms of 17β-estradiol imprinting by computational prediction and spectroscopic analysis

  • Shuting Wei
  • Michael Jakusch
  • Boris MizaikoffEmail author
Original Paper


Molecular dynamics simulations combined with spectroscopic analysis were applied to understand the nature of recognition in molecularly imprinted polymers (MIPs), and for optimizing the MIP formulation. The best monomers for synthesizing imprinted materials for 17β-estradiol (BE2) were selected by evaluating the strength of the template–monomer interaction derived from molecular dynamics simulations. A number of potential functional monomers for BE2 were screened for hydrogen-bonding strength in order to analyze template–monomer interactions favorable for synthesizing noncovalent MIPs, with the simulations revealing that methacrylic acid, 2-(diethylamino)ethyl methacrylate, and methacrylamide provided the highest binding affinity to BE2. These theoretical predictions agree with previously reported results on batch rebinding studies using the corresponding functional monomers for synthesizing a series of MIPs. Molecular analysis such as 1H NMR was used for experimentally confirming the prevalent template–monomer interactions derived from the modeling results. Molecular dynamics simulations indicating monomer dimerization in the prepolymerization solution correlated with the nature of the porogenic solvent, which was confirmed by NMR studies on hydrogen-bonding interactions of methacrylic acid in different solvents. Furthermore, batch rebinding studies revealed that the specific functionalities of the monomers essential to rebinding are retained after polymerization, which proves that the application of computational methods for modeling the prepolymerization solution provides useful information for optimizing real MIP systems.


Molecularly imprinted polymers 17β-Estradiol Molecular modeling 1H NMR spectroscopy 



This work was in part supported by the European Commission’s 5th Framework Programme (Quality of Life and Management of Living Resources, no. QLK4-CT2002-02323), and the US Geological Survey (National Water Quality Assessment Program, no. 2002GA30G).


  1. 1.
    Kriz D, Ramstroem O, Svensson A, Mosbach K (1995) Anal Chem 67:2142CrossRefGoogle Scholar
  2. 2.
    Jakusch M, Janotta M, Mizaikoff B, Mosbach K, Haupt K (1999) Anal Chem 71:4786CrossRefGoogle Scholar
  3. 3.
    Greene NT, Shimizu KD (2005) J Am Chem Soc 127:5695CrossRefGoogle Scholar
  4. 4.
    Kempe M, Mosbach K (1995) J Chromatogr A 691:317CrossRefGoogle Scholar
  5. 5.
    Haginaka J, Sanbe H (2001) J Chromatogr A 913:141CrossRefGoogle Scholar
  6. 6.
    Watabe Y, Hosoya K, Tanaka N, Kubo T, Kondo T, Morita M (2005) J Chromatogr A 1073:363CrossRefGoogle Scholar
  7. 7.
    Sellergren B (1994) Anal Chem 66:1578–1582CrossRefGoogle Scholar
  8. 8.
    Muldoon MT, Stanker LH (1997) Anal Chem 69:803–808CrossRefGoogle Scholar
  9. 9.
    Stroink T, Paarlberg E, Waterval JC, Bult A, Underberg WJ (2001) Electrophoresis 22:2375–2383CrossRefGoogle Scholar
  10. 10.
    Zhu Q-Z, Degelmann P, Niessner R, Knopp D (2002) Environ Sci Technol 36:5411–5420CrossRefGoogle Scholar
  11. 11.
    Molinelli A, Weiss R, Mizaikoff B (2002) J Agric Food Chem 50:1804–1808CrossRefGoogle Scholar
  12. 12.
    Caro E, Marce RM, Cormack PAG, Sherrington DC, Borrull F (2003) J Chromatogr A 995:233–238CrossRefGoogle Scholar
  13. 13.
    Zhu X, Yang J, Su Q, Cai J, Gao Y (2005) J Chromatogr A 1092:161–169CrossRefGoogle Scholar
  14. 14.
    Perez-Moral N, Mayes AG (2006) Biosens Bioelectron 21:1798–1803CrossRefGoogle Scholar
  15. 15.
    Hennion M-C, Pichon V (2003) J Chromatogr A 1000:29CrossRefGoogle Scholar
  16. 16.
    Wei S, Molinelli A, Mizaikoff B (2006) Biosens Bioeletron 21:1943–1951CrossRefGoogle Scholar
  17. 17.
    Vidyasankar S, Ru M, Arnold FH (1997) J Chromatogr A 775:51CrossRefGoogle Scholar
  18. 18.
    Andersson HS, Nicholls IA (1997) Bioorg Chem 25:203–211CrossRefGoogle Scholar
  19. 19.
    Piletsky SA, Karim K, Piletska EV, Day CJ, Freebairn KW, Legge C, Turner APF (2001) Analyst 126:1826–1830CrossRefGoogle Scholar
  20. 20.
    Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Anal Chem 74:1288–1293CrossRefGoogle Scholar
  21. 21.
    Wu L, Sun B, Li Y, Chang W (2003) Analyst 128:944–949CrossRefGoogle Scholar
  22. 22.
    Dineiro Y, Menendez MI, Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2005) Anal Chem 77:6741–6746CrossRefGoogle Scholar
  23. 23.
    Molinelli A, O’Mahony J, Nolan K, Smyth MR, Jakusch M, Mizaikoff B (2005) Anal Chem 77:5196–5204CrossRefGoogle Scholar
  24. 24.
    Ye L, Weiss R, Mosbach K (2000) Macromolecules 33:8239–8245CrossRefGoogle Scholar
  25. 25.
    Rachkov A, McNiven S, El’skaya A, Yano K, Karube I (2000) Anal Chim Acta 405:23–29CrossRefGoogle Scholar
  26. 26.
    Piscopo L, Prandi C, Coppa M, Sparnacci K, Laus M, Lagana A, Curini R, D’Ascenzo G (2002) Macromol Chem Phys 203:1532–1538CrossRefGoogle Scholar
  27. 27.
    Dong H, Tong A-j, Li L-d (2003) Spectrochim Acta Part A 59A:279–284Google Scholar
  28. 28.
    Sanbe H, Haginaka J (2003) J Pharm Biomed Anal 30:1835–1844CrossRefGoogle Scholar
  29. 29.
    Weigel S, Kallenborn R, Huhnerfuss H (2004) J Chromatogr A 1023:183–195CrossRefGoogle Scholar
  30. 30.
    Liu R, Zhou JL, Wilding A (2004) J Chromatogr, A 1022:179–189CrossRefGoogle Scholar
  31. 31.
    Mouatassim-Souali A, Tamisier-Karolak SL, Perdiz D, Cargouet M, Levi Y (2003) J Sep Sci 26:105–111CrossRefGoogle Scholar
  32. 32.
    Belfroid AC, Van der Horst A, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Sci Total Environ 225:101–108CrossRefGoogle Scholar
  33. 33.
    Lee H-B, Peart TE (1998) Water Qual Res J Can 33:389–402Google Scholar
  34. 34.
    Fine DD, Breidenbach GP, Price TL, Hutchins SR (2003) J Chromatogr A 1017:167–185CrossRefGoogle Scholar
  35. 35.
    Jeannot R, Sabik H, Sauvard E, Dagnac T, Dohrendorf K (2002) J Chromatogr A 974:143–159CrossRefGoogle Scholar
  36. 36.
    Ternes TA (2001) Trends Anal Chem 20:419–434CrossRefGoogle Scholar
  37. 37.
    Ternes TA, Andersen H, Gilberg D, Bonerz M (2002) Anal Chem 74:3498–3504CrossRefGoogle Scholar
  38. 38.
    Mullett WM, Walles M, Levsen K, Borlak J, Pawliszyn J (2004) J Chromatogr B 801:297–306CrossRefGoogle Scholar
  39. 39.
    Xie J, Zhu L, Xu X (2002) Anal Chem 74:2352–2360CrossRefGoogle Scholar
  40. 40.
    Koeber R, Fleischer C, Lanza F, Boos K-S, Sellergren B, Barcelo D (2001) Anal Chem 73:2437–2444CrossRefGoogle Scholar
  41. 41.
    Lagana A, Bacaloni A, De Leva I, Faberi A, Fago G, Marino A (2004) Anal Chim Acta 501:79–88CrossRefGoogle Scholar
  42. 42.
    Vanderford BJ, Pearson RA, Rexing DJ, Snyder SA (2003) Anal Chem 75:6265–6274CrossRefGoogle Scholar
  43. 43.
    Farre M, Kloter G, Petrovic M, Alonso MC, Lopez de Alda MJ, Barcelo D (2002) Anal Chim Acta 456:19–30CrossRefGoogle Scholar
  44. 44.
    Sole M, Lopez de Alda MJ, Castillo M, Porte C, Ladegaard-Pedersen K, Barcelo D (2000) Environ Sci Technol 34:5076–5083CrossRefGoogle Scholar
  45. 45.
    Ternes TA, Brenner-Weiss G, Eggert T, Muller J, Kirschhofer F, Nusser M, Wilken R-D, Obst U (1999) Vom Wasser 93:255–263Google Scholar
  46. 46.
    Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Environ Sci Technol 34:5059–5066CrossRefGoogle Scholar
  47. 47.
    Sellergren B (1994) Anal Chem 66:1578–1582CrossRefGoogle Scholar
  48. 48.
    Rampey AM, Umpleby RJ II, Rushton GT, Iseman JC, Shah RN, Shimizu KD (2004) Anal Chem 76:1123–1133CrossRefGoogle Scholar
  49. 49.
    Jaroniec M, Madey R (1988) Physical adsorption on heterogeneous solids. Elsevier, New YorkGoogle Scholar
  50. 50.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) Amber 8. University of California, San FranciscoGoogle Scholar
  51. 51.
    Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074CrossRefGoogle Scholar
  52. 52.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  53. 53.
    Jakalian A, Bush BL, Jack BD, Bayly CI (2000) J Comput Chem 21:132–146CrossRefGoogle Scholar
  54. 54.
    Toukmaji A, Sagui C, Board J, Darden T (2000) J Chem Phys 113:10913–10927CrossRefGoogle Scholar
  55. 55.
    Sagui C, Pedersen LG, Darden TA (2004) J Chem Phys 120:73–87CrossRefGoogle Scholar
  56. 56.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:241–327CrossRefGoogle Scholar
  57. 57.
    O’Mahony J, Molinelli A, Nolan K, Smyth MR, Mizaikoff B (2005) Biosens Bioelectron 20:1884–1893CrossRefGoogle Scholar
  58. 58.
    Dirion B, Schillinger E, Sellergren B (2004) Mater Res Soc Symp Proc 787:53–60Google Scholar
  59. 59.
    Svenson J, Andersson HS, Piletsky SA, Nicholls IA (1998) J Mol Recognit 11:83–86CrossRefGoogle Scholar
  60. 60.
    Abrahams RJ, Fisher J, Loftus P (1988) Introduction to NMR spectroscopy, 1st edn. Wiley, New YorkGoogle Scholar
  61. 61.
    Busetta B, Hospital M (1972) Acta Crystallogr Sect B 28:560–567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Austrian Research CentersSeibersdorfAustria

Personalised recommendations