Analytical and Bioanalytical Chemistry

, Volume 388, Issue 5–6, pp 1049–1057 | Cite as

Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor

  • Fabiana Arduini
  • Aziz Amine
  • Danila Moscone
  • Francesco Ricci
  • Giuseppe Palleschi
Original Paper


The nerve agents are chemical warfare agents known to be used during terrorist attacks. An inexpensive and portable system to be used by first responders and military personnel is of interest owing to the continuing threat of possible terrorist attacks. Amperometric biosensors based on cholinesterase inhibition show such potentialities. In this work butyrylcholinesterase was immobilized onto screen-printed electrodes modified with Prussian blue and the nerve agent detection was performed by measuring the residual activity of enzyme. The optimized biosensor was tested with sarin and VX standard solutions, showing detection limits of 12 and 14 ppb (10% of inhibition), respectively. The enzymatic inhibition was also obtained by exposing the biosensors to sarin in gas phase. Two different concentrations of sarin gas (0.1 and 0.5 mg m−3) at different incubation times (from 30 s up to 10 min) were tested. It is possible to detect sarin at a concentration of 0.1 mg m−3 with 30-s incubation time, with a degree of inhibition of 34%, which match the legal limits (immediate danger to life and health).


Biosensor Nerve agents Butyrylcholinesterase Screen printed electrode 



The authors acknowledge the financial support provided by Aerosekur S.p.a., Aprilia, Italy.


  1. 1.
    Abu-Qare AW, Abou-Donia MB (2002) Food Chem Toxicol 40:1327–1333CrossRefGoogle Scholar
  2. 2.
    Cannard K (2006) J Neurol Sci 86–94Google Scholar
  3. 3.
    Kuca K, Juc D, Cabal J, Hrabinova M, Bartosova L, Opletalova V (2006) Basic Clin Pharmacol Toxicol 98:389–394CrossRefGoogle Scholar
  4. 4.
    Khordagui H (1996) Mar Environ Res 41:133–143CrossRefGoogle Scholar
  5. 5.
    Van der Schans MJ, Lander BJ, Wiel H, Landerberg JP, Benshop HP (2003) Toxicol Appl Pharmacol 191:48–62CrossRefGoogle Scholar
  6. 6.
    Polhuijs M, Langenberg JP, Benschop HP (1997) Toxicol Appl Pharmacol 146:156–161CrossRefGoogle Scholar
  7. 7.
    Connolly P (1995) Biosens Bioelectron 10:1–6CrossRefGoogle Scholar
  8. 8.
    Turner APF, Karube I, Wilson G (eds) (1987) Biosensor fundamentals and applications. Oxford University Press, OxfordGoogle Scholar
  9. 9.
    Mlsna TE, Cemalovic S, Warburtan M, Hobson ST, Mlsna DA, Patel SV (2006) Sens Actuators B 116:192–201CrossRefGoogle Scholar
  10. 10.
    Tomchenko AA, Harmer GP, Marquis BT (2005) Sens Actuators B 108:41–55CrossRefGoogle Scholar
  11. 11.
    White BJ, Harmon HJ (2005) Sens Lett 3:36–41CrossRefGoogle Scholar
  12. 12.
    Lee WE, Thompson HG, Hall JG, Bader DE (2000) Biosens Bioelectron 14:795–804CrossRefGoogle Scholar
  13. 13.
    Joshi KA, Prouza M, Kum M, Wang J, Tang J, Haddon R, Chen W, Mulchandani A (2006) Anal Chem 78:331–336CrossRefGoogle Scholar
  14. 14.
    Liu G, Lin Y (2006) Anal Chem 78:835–843CrossRefGoogle Scholar
  15. 15.
    Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) Electroanalysis 17:54–58CrossRefGoogle Scholar
  16. 16.
    Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) Sens Actuators B 115:150–157CrossRefGoogle Scholar
  17. 17.
    Trojanowicz M, Hitchman ML (1996) Trends Anal Chem 15:38–45Google Scholar
  18. 18.
    Cremisini C, Di Sario S, Mela J, Pilloton R, Palleschi G (1995) Anal Chim Acta 311:273–280CrossRefGoogle Scholar
  19. 19.
    Albareda-Sirvent M, Merkoci A, Alegret S (2001) Anal Chim Acta 442:35–44CrossRefGoogle Scholar
  20. 20.
    Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G (2006) Anal Chim Acta 580:155–162CrossRefGoogle Scholar
  21. 21.
    Lojou E, Bianco P (2006) J Electroceram 16:79–91CrossRefGoogle Scholar
  22. 22.
    Ricci F, Moscone D, Tuta CS, Palleschi G, Amine A, Poscia A, Valgimigli F, Messeri D (2005) Biosens Bioelectron 20:1993–2000CrossRefGoogle Scholar
  23. 23.
    Matsuura H, Sato Y, Sawaguchi T, Mizutani F (2003) Sens Actuators 91:148–151CrossRefGoogle Scholar
  24. 24.
    Moore RR, Banks CE, Compton RG (2004) Analyst 129:755–758CrossRefGoogle Scholar
  25. 25.
    Vanderberg PJ, Johnson DC (1993) Anal Chem 65:2713–2718CrossRefGoogle Scholar
  26. 26.
    Hart AL, Collier WA, Janssen D (1997) Biosens Bioelectron 12:645–654CrossRefGoogle Scholar
  27. 27.
    Collier WA, Clear M, Hart AL (2002) Biosens Bioelectron 17:815–819CrossRefGoogle Scholar
  28. 28.
    Martorell D, Cespedes F, Martinez-Fabregas E, Alegret S (1997) Anal Chim Acta 337:305–313CrossRefGoogle Scholar
  29. 29.
    Silva Nunes G, Jeanty G, Marty JL (2004) Anal Chim Acta 523:107–115CrossRefGoogle Scholar
  30. 30.
    Ricci F, Arduini F, Amine A, Moscone D, Palleschi G (2004) J Electroanal Chem 563:229–237CrossRefGoogle Scholar
  31. 31.
    Ricci F, Arduini F, Tuta CS, Sozzo U, Moscone D, Amine A, Palleschi G (2006) Anal Chim Acta 558:164–170CrossRefGoogle Scholar
  32. 32.
    Ricci F, Amine A, Palleschi G, Moscone D (2003) Biosens Bioelectron 18:165–174CrossRefGoogle Scholar
  33. 33.
    Simonian AL, Flounders AW, Wild JR (2005) Electroanalysis 16:1896–1906CrossRefGoogle Scholar
  34. 34.
    Ashani Y, Segev O, Balan A (2004) Toxicol Appl Pharmacol 194:90–99CrossRefGoogle Scholar
  35. 35.
    Centers for Disease Control and Prevention (2004) Sarin emergency response card.
  36. 36.
    Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Biosens Bioelectron 21:1405–1423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Fabiana Arduini
    • 1
  • Aziz Amine
    • 2
  • Danila Moscone
    • 1
  • Francesco Ricci
    • 1
  • Giuseppe Palleschi
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma Tor VergataRomeItaly
  2. 2.Faculté de Sciences et Techniques de MohammadiaMohammadiaMorocco

Personalised recommendations