Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 399–404 | Cite as

Molecular imprinting of peptides and proteins in aqueous media

  • Daniel S. Janiak
  • Peter KofinasEmail author


Molecular imprinting has received significant attention in recent years, as it provides a viable method for creating synthetic receptors capable of selectively recognizing specific target molecules. Despite significant growth within the field, the majority of template molecules studied thus far have been characterized by their low molecular weight and insolubility in aqueous systems. In biological systems, molecular recognition events occur in aqueous media. Therefore, in order to create molecularly imprinted polymers capable of mimicking biological processes, it is necessary to synthesize artificial receptors which can selectively recognize their respective target biological macromolecules such as peptides and proteins in aqueous media. In this review, we discuss the challenges associated with the imprinting of peptides and proteins in aqueous media. In addition, we discuss the significant progress which has been made within the field.


Molecular imprinting Protein Peptide Aqueous Synthetic receptor 



This material is based upon work supported by the US Department of Agriculture National Research Initiative Competitive Grants Program (USDA-NRICGP) Grant # 2005-35603-16278.


  1. 1.
    Takeuchi T, Haginaka J (1999) J Chromatogr B 728:1–20CrossRefGoogle Scholar
  2. 2.
    Steinke J, Sherrington DC, Dunkin IR (1995) Adv Polym Sci 123:81–125CrossRefGoogle Scholar
  3. 3.
    Wulff G (1995) Angew Chem Int Ed Engl 34:1812–1832CrossRefGoogle Scholar
  4. 4.
    Shea KJ (1994) Trends Polym Sci 2:166Google Scholar
  5. 5.
    Mosbach K, Ramström O (1996) Biotechnology 14:163–170CrossRefGoogle Scholar
  6. 6.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504CrossRefGoogle Scholar
  7. 7.
    Sellergren B (2000) Angew Chem Int Ed Engl 39:1031–1037CrossRefGoogle Scholar
  8. 8.
    Byrne ME, Park K, Peppas NA (2002) Adv Drug Deliv Rev 54:149–161CrossRefGoogle Scholar
  9. 9.
    Sellergren B (1997) Trends Anal Chem 16:310–320CrossRefGoogle Scholar
  10. 10.
    Andersson LI, Mosbach K (1990) J Chromatogr 516:313–322CrossRefGoogle Scholar
  11. 11.
    Kempe M, Mosbach K (1995) J Chromatogr A 691:317–323CrossRefGoogle Scholar
  12. 12.
    Sellergren B, Lepisto M, Mosbach K (1988) J Am Chem Soc 110:5853–5860CrossRefGoogle Scholar
  13. 13.
    Andersson LI, O’Shannessy DJ, Mosbach K (1990) J Chromatogr 513:167–179CrossRefGoogle Scholar
  14. 14.
    Andersson LI, Miyabayashi A, O’Shannessy DJ, Mosbach K (1990) J Chromatogr 516:323–331CrossRefGoogle Scholar
  15. 15.
    Lin C-Y, Tai D-F, Wu T-Z (2003) Chem Eur J 9:5107-5110CrossRefGoogle Scholar
  16. 16.
    Zhao Z, Wang C, Guo M, Shi L, Fan Y, Long Y, Mi H (2006) FEBS Lett 580:2750–2754CrossRefGoogle Scholar
  17. 17.
    Cheng Z, Zhang L, Li Y (2004) Chem Eur J 10:3555–3561CrossRefGoogle Scholar
  18. 18.
    Rezeli M, Kilár F, Hjertén S (2006) J Chromatogr A 1109:100–102CrossRefGoogle Scholar
  19. 19.
    Matsui J, Nicholls IA, Takeuchi T, Mosbach K, Karube I (1996) Anal Chim Acta 335:71–77CrossRefGoogle Scholar
  20. 20.
    Hart BR, Shea KJ (2002) Macromolecules 35:6192–6201CrossRefGoogle Scholar
  21. 21.
    Piletsky SA, Andersson HS, Nicholls IA (1999) Macromolecules 32:633–636CrossRefGoogle Scholar
  22. 22.
    Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF (2001) Anal Chem 73:5281–5286CrossRefGoogle Scholar
  23. 23.
    Nicholls IA, Ramström O, Mosbach K (1995) J Chromatogr A 691:349–353CrossRefGoogle Scholar
  24. 24.
    Rachkov A, Minoura N (2000) J Chromatogr A 889:111–118CrossRefGoogle Scholar
  25. 25.
    Rachkov A, Minoura N (2001) Biochim Biophys Acta 1544:255–266Google Scholar
  26. 26.
    Nishino H, Huang C-S, Shea KJ (2006) Angew Chem Int Ed Engl 45:2392–2396CrossRefGoogle Scholar
  27. 27.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland, New YorkGoogle Scholar
  28. 28.
    Shi H, Tsai W-B, Garrison MD, Ferrari S, Ratner BD (1999) Nature 398:593–597CrossRefGoogle Scholar
  29. 29.
    Yilmaz E, Haupt K, Mosbach K (2000) Angew Chem Int Ed Engl 39:2115–2118CrossRefGoogle Scholar
  30. 30.
    Titirici MM, Sellergren B (2004) Anal Bioanal Chem 378:1913–1923CrossRefGoogle Scholar
  31. 31.
    Minoura N, Burow M (1996) Biochem Biophys Res Commun 227:419–422CrossRefGoogle Scholar
  32. 32.
    Liao JL, Wang Y, Hjertén S (1996) Chromatographia 42:259–262CrossRefGoogle Scholar
  33. 33.
    Ariga K, Kunitake T (1998) Acc Chem Res 31:371–378CrossRefGoogle Scholar
  34. 34.
    Klein JU, Whitcombe MJ, Mullholland F, Vulfson EN (1999) Angew Chem Int Ed Engl 38:2057–2060CrossRefGoogle Scholar
  35. 35.
    Demirel G, Ozcetin G, Turan E, Caykara T (2005) Macromol Biosci 5:1032–1037CrossRefGoogle Scholar
  36. 36.
    Piletsky SA, Andersson HS, Nicholls IA (1998) J Mol Recognit 11:94–97CrossRefGoogle Scholar
  37. 37.
    Hirayama K, Sakai Y, Kameoka K (2001) J Appl Polym Sci 81:3378–3387CrossRefGoogle Scholar
  38. 38.
    Vaidya AA, Lele BS, Kulkarni MG, Mashelkar RA (2001) J Appl Polym Sci 81:1075–1083CrossRefGoogle Scholar
  39. 39.
    Hawkins DM, Stevenson D, Reddy SM (2005) Anal Chim Acta 542:61–65CrossRefGoogle Scholar
  40. 40.
    Mathews CK, Holde KEV (1995) Biochemistry. Benjamin/Cummings, Menlo ParkGoogle Scholar
  41. 41.
    Bolisay LD, Culver JN, Kofinas P (2006) Biomaterials 27:4165–4168CrossRefGoogle Scholar
  42. 42.
    Dickert FL, Hayden O, Bindeus R, Mann K-J, Blaas D, Waigmann E (2004) Anal Bioanal Chem 378:1929–1934CrossRefGoogle Scholar
  43. 43.
    Huang J-T, Zhang J, Zhang J-Q, Zheng S-H (2005) J Appl Polym Sci 95:358–361CrossRefGoogle Scholar
  44. 44.
    Guo TY, Xia YQ, Hao GJ, Zhang BH (2004) Chin Chem Lett 15:1339–1341Google Scholar
  45. 45.
    Klein JU, Whitcombe MJ, Mulholland F, Vulfson EN (1999) Angew Chem Int Ed Engl 38:2057–2060CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations