Advertisement

Analytical and Bioanalytical Chemistry

, Volume 388, Issue 5–6, pp 1137–1145 | Cite as

Recognition of oxytocin by capillary electrochromatography with monolithic tetrapeptide-imprinted polymer used as the stationary phase

  • Chao Zheng
  • Zhaosheng Liu
  • Ruyu Gao
  • Lihua Zhang
  • Yukui ZhangEmail author
Original Paper

Abstract

Using YPLG (Tyr-Pro-Leu-Gly), a tetrapeptide, as the template, an imprinted monolithic column was prepared and applied to the selective recognition of oxytocin based on the epitope approach and capillary electrochromatography (CEC). By optimizing the polymerization solution in terms of functional monomer, cross-linking reagent, porogen, and imprinted template via CEC evaluations of synthesized columns, an imprinted monolith with good recognition capacity (the imprinting factors for YPLG and oxytocin were 4.499 and 4.013, respectively) and high column efficiency (theoretical plates for YPLG and oxytocin were 22,995 plates/m and 16,952 plates/m, respectively) was achieved. In addition, the effects of various experimental parameters on the recognition of oxytocin, including the organic modifier content, the buffer concentration, and the pH value, were studied systematically. Furthermore, a mixture of oxytocin and other proteins was analyzed using this monolithic CEC column, and oxytocin was eluted much more slowly than other large biomolecules, which demonstrated the high selective recognition ability of such an imprinted monolith for oxytocin with PLG (Pro-Leu-Gly) as the epitope.

Figure

Separation of a mixture of oxytocin, BSA, bovine hemoglobin, ovalbumin, and lysozyme on the open column, the blank monolithic column, and the monolithic YPLG-imprinted column

Keywords

Molecularly imprinted polymer Capillary electrochromatography Monolithic column Epitope approach Oxytocin 

Notes

Acknowledgements

The authors are grateful for the financial support from the State Key Fundamental Research Program (20435020) and the National Natural Science Foundation (20575045).

References

  1. 1.
    Xu YL, Liu ZS, Wang HF, Yan C, Gao RY (2005) Electrophoresis 26:804–811CrossRefGoogle Scholar
  2. 2.
    Iqbal SS, Lulka MF, Chambers JP, Thompson RG, Valdes JJ (2000) Mat Sci Eng C 7:77–81CrossRefGoogle Scholar
  3. 3.
    Hart BR, Shea KJ (2001) J Am Chem Soc 123:2072–2073CrossRefGoogle Scholar
  4. 4.
    Andersson LI, Hardenborg E, Sandberg-Stall M, Moller K, Henriksson J, Bramsby-Sjostrom I, Olsson LI, Abdel-Rehim M (2004) Anal Chim Acta 526:147–154CrossRefGoogle Scholar
  5. 5.
    Flam F (1994) Science 263:1221–1222CrossRefGoogle Scholar
  6. 6.
    Nicholls IA (1995) Chem Lett 24:1035–1036CrossRefGoogle Scholar
  7. 7.
    Kempe M, Mosbach K (1995) J Chromatogr A 691:317–323CrossRefGoogle Scholar
  8. 8.
    Pang XS, Cheng GX, Lu SL, Tang E (2006) Anal Bioanal Chem 384:225–230CrossRefGoogle Scholar
  9. 9.
    Lu SL, Cheng GX, Pang XS (2006) J Appl Polym Sci 99:2401–2407CrossRefGoogle Scholar
  10. 10.
    Shi H, Tsai WB, Garrison MD, Ferrari S, Ratner BD (1999) Nature 398:593–597CrossRefGoogle Scholar
  11. 11.
    Yang HH, Zhang SQ, Tan F, Zhuang ZX, Wang XR (2005) J Am Chem Soc 127:1378–1379CrossRefGoogle Scholar
  12. 12.
    Ko DY, Lee HJ, Jeong B (2006) Macromol Rapid Comm 27:1367–1372CrossRefGoogle Scholar
  13. 13.
    Rachkov A, Minoura N (2001) BBA—Proteins Proteom 1544:255–266Google Scholar
  14. 14.
    Rachkov A, Minoura N (2000) J Chromatogr A 889:111–118CrossRefGoogle Scholar
  15. 15.
    Rachkov A, Hu M, Bulgarevich E, Matsumoto T, Minoura N (2004) Anal Chim Acta 504:191–197CrossRefGoogle Scholar
  16. 16.
    Nishino H, Huang CS, Shea KJ (2006) Angew Chem Int Ed 45:2392–2396CrossRefGoogle Scholar
  17. 17.
    Liu ZS, Xu YL, Yan C, Gao RY (2004) Anal Chim Acta 523:243–250CrossRefGoogle Scholar
  18. 18.
    Liu ZS, Xu YL, Yan C, Gao RY (2005) J Chromatogr A 1087:20–28CrossRefGoogle Scholar
  19. 19.
    Deng QL, Lun ZH, Shao H, Yan C, Gao RY (2005) Anal Bioanal Chem 382:51–58CrossRefGoogle Scholar
  20. 20.
    Peters EC, Petro M, Svec F, Frechet JMJ (1997) Anal Chem 69:3646–3649CrossRefGoogle Scholar
  21. 21.
    Hjerten S (1999) Ind Eng Chem Res 38:1205–1214CrossRefGoogle Scholar
  22. 22.
    Hilder EF, Svec F, Fréchet JMJ (2004) J Chromatogr A 1044:3–22CrossRefGoogle Scholar
  23. 23.
    Yin J, Yang GL, Chen Y (2005) J Chromatogr A 1090:68–75CrossRefGoogle Scholar
  24. 24.
    Sun B, Li Y, Chang W (2001) J Mol Recognit 14:388–392CrossRefGoogle Scholar
  25. 25.
    Bartle KD, Myers P (2001) J Chromatogr A 916:3–23CrossRefGoogle Scholar
  26. 26.
    Wright PB, Lister AS, Dorsey JG (1997) Anal Chem 69:3251–3259CrossRefGoogle Scholar
  27. 27.
    Jin WH, Fu HJ, Huang XD, Xiao H, Zou HF (2003) Electrophoresis 24:3172–3180CrossRefGoogle Scholar
  28. 28.
    Scherman D, Nordmann JJ (1982) Proc Natl Acad Sci USA 79:476–479CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Chao Zheng
    • 1
  • Zhaosheng Liu
    • 2
  • Ruyu Gao
    • 3
  • Lihua Zhang
    • 4
  • Yukui Zhang
    • 1
    • 4
    Email author
  1. 1.College of ChemistryNankai UniversityTianjinChina
  2. 2.College of PharmacyTianjin Medical UniversityTianjinChina
  3. 3.State Key Laboratory of Element Organic Chemistry,Institute of Element Organic ChemistryNankai UniversityTianjinChina
  4. 4.National Chromatographic R. & A. Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations