Advertisement

Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 413–422 | Cite as

Molecular recognition of polycyclic aromatic hydrocarbons by pyrene-imprinted microspheres

  • C. BaggianiEmail author
  • L. Anfossi
  • P. Baravalle
  • C. Giovannoli
  • G. Giraudi
Original Paper

Abstract

Pyrene-imprinted microbeads that display molecular recognition towards polyaromatic hydrocarbons (PAHs) were obtained by the aqueous suspension thermopolymerization of a mixture of template, 4-vinylpyridine and divinylbenzene in the molar ratio of 1:8:40. The microbeads were packed into an HPLC column and the retention behaviour of pyrene in the presence of eluents of increasing polarity was investigated by measuring the binding capacity and the imprinting factor. Selectivity was evaluated by eluting pyrene and 22 other related PAHs in the HPLC column when equilibrated with acetonitrile–dichloromethane 4:1 (v/v). Twelve molecular descriptors were calculated for each PAH molecule: MW, the molecular weight; SAS, the solvent-accessible molecular surface area; Svdw, the van der Waals molecular surface area; Vol, the van der Waals molecular volume; MOv, the molecular ovality; RG, the radius of gyration; B/L, the breadth-to-length ratio; μ 2, the square of the total dipole moment; HOMO, the highest occupied molecular orbital; LUMO, the lowest unoccupied molecular orbital; Δorb, the absolute value of the difference between the HOMO and LUMO; log P, the logarithm of the n-octanol–water partition coefficient. Quantitative structure–retention relationships between the logarithm of the capacity factors and these descriptors were searched for using a multiple linear regression (MLR) method. The best regression models obtained showed that the capacity factor correlated well with those molecular descriptors which had structural character, such as logP, while the effect of the molecular descriptors with electronic character was negligible. The results obtained indicate that the molecular recognition of PAHs by the imprinted polymer is controlled by the shape and dimension of the binding sites through hydrophobic interactions.

Figure

Retention and imprinting factors of PAHs on the impinted and not-imprinted columns. The area under the lower diagonal line (IF = 1.0) corresponds to the absence of imprinting effect for the interaction between the stationary phase and a given PAH.

Keywords

Molecular imprinting Molecular recognition Pyrene Polycyclic aromatic hydrocarbons Quantitative structure–retention relationship 

Abbreviations

ACP

acenaphthene

ACY

acenaphthylene

ACN

acetonitrile

ANT

anthracene

BaA

benz[a]anthracene

BbA

benzo[b]anthracene

BbF

benzo[b]fluoranthene

BjF

benzo[j]fluoranthene

BkF

benzo[k]fluoranthene

BgP

benzo[ghi]perylene

BaP

benzo[a]pyrene

BeP

benzo[e]pyrene

CHR

chrysene

CPP

cyclopenta[cd]pyrene

DeP

dibenzo[ae]pyrene

DhA

dibenzo[ah]anthracene

DhP

dibenzo[ah]pyrene

DlP

dibenzo[al]pyrene

DCM

dichloromethane

F

F-test of significance

FLT

fluoranthene

FLR

fluorene

HOMO

highest occupied molecular orbital

IcP

indeno[1,2,3-cd]pyrene

IF

imprinting factor

k

retention factor

L/B

molecular length-to-breadth ratio

logP

n-octanol–water partition coefficient

LUMO

lowest unoccupied molecular orbital

MIP

molecularly imprinted polymer

MISPE

molecularly imprinted solid-phase extraction

MLR

multiple linear regression

MOv

molecular ovality

MW

molecular weight

NAP

naphthalene

NIP

non-imprinted polymer

P

significance level of the model

PAH

polycyclic aromatic hydrocarbon

PHE

phenanthrene

PRESS

predicted residual error sum of squares

PYR

pyrene

QSRR

quantitative structure–retention relationship

\(R^{2}_{{{\text{adj}}}} \)

adjusted multiple correlation coefficient

RG

radius of gyration

SAS

solvent-accessible molecular surface area

SEE

standard error of estimate

Svdw

van der Waals molecular surface area

Vol

van der Waals molecular volume

Δorb

difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital

μ2

square of total dipole moment

Notes

Acknowledgments

The authors gratefully acknowledge the Water Research Institute of CNR (Milan, Italy) and the Piedmont Regional Agency for Environmental Protection—Food Division (Torino, Italy), which kindly furnished samples of PAHs.

References

  1. 1.
    Harvey RG (eds) (1997) Polycyclic aromatic hydrocarbons. Wiley–VCH, New YorkGoogle Scholar
  2. 2.
    Groopman JD, Kensler TW (1993) Chem Res Toxicol 6:764–770CrossRefGoogle Scholar
  3. 3.
    Wenzl T, Simon R, KleinerJ, Anklam E (2006) Trends Anal Chem 25:716–725CrossRefGoogle Scholar
  4. 4.
    Dickert FL, Besenbock H, Tortschanoff M (1988) Adv Mater 10:149–151CrossRefGoogle Scholar
  5. 5.
    Dickert FL, Forth P, Lieberzeit P, Tortschanoff M (1998) Fresenius J Anal Chem 360:759–762CrossRefGoogle Scholar
  6. 6.
    Dickert FL, Tortschanoff M, Bulst WE, Fischerauer G (1999) Anal Chem 71:4559–4563CrossRefGoogle Scholar
  7. 7.
    Dickert FL, Achatz P, Halikias K (2001) Fresenius J Anal Chem 371:11–15CrossRefGoogle Scholar
  8. 8.
    Kirsch N, Hart JP, Bird DJ, Luxton RW, Mc Calley DV (2001) Analyst 126:1936–1941CrossRefGoogle Scholar
  9. 9.
    Kirsch N, Honeychurch KC, Hart JP, Whitcombe MJ (2005) Electroanalysis 17:571–578CrossRefGoogle Scholar
  10. 10.
    Salinas-Castillo A, Sanchez-Barragan I, Costa-Fernandez JM, Pereiro R, Ballestreros A, Gonzalez JM, Segura-Carretero A, Fernandez-Gutierrez A, Sanz-Mendel A (2005) Chem Commun 3224–3226Google Scholar
  11. 11.
    Carlson CA, Lloyd JA, Dean SL, Walker NR, Edmiston PL (2006) Anal Chem 78:3537–3542CrossRefGoogle Scholar
  12. 12.
    Luo N, Hatchett DW, Rogers KR (2006) Electroanalysis 18:2180–2187CrossRefGoogle Scholar
  13. 13.
    Lai JP, Niessner R, Knopp D (2004) Anal Chim Acta 522:137–144CrossRefGoogle Scholar
  14. 14.
    Bodor N, Huang MJ (1992) J Pharmaceut Sci 81:272–281CrossRefGoogle Scholar
  15. 15.
    Wise SA, Bonnett WJ, Guenther FR, May WE (1981) J Chromatogr Sci 19:457–465Google Scholar
  16. 16.
    Catabay A, Okumura C, Jinno K, Pesek JJ, Williamsen E, Fetzer JC, Biggs WR (1998) Chromatographia 47:13–20CrossRefGoogle Scholar
  17. 17.
    Chen S, Fetzer JC, Meyerhoff ME (2001) Fresenius J Anal Chem 369:385–392CrossRefGoogle Scholar
  18. 18.
    Markuszewski M, Kaliszan R (2002) J Chromatogr B 768:55–66CrossRefGoogle Scholar
  19. 19.
    Moon T, Chi MW, Park SJ, Yoon CN (2003) J Liq Chromatogr R T 26:2987–3002CrossRefGoogle Scholar
  20. 20.
    Baczek T, Wiczling P, Marszall M, Vander Heyden Y, Kaliszan R (2006) J Proteome Res 4:555–563CrossRefGoogle Scholar
  21. 21.
    Næs T, Mevik BH (2001) J Chemometrics 15:413–426CrossRefGoogle Scholar
  22. 22.
    Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics, Part A. Elsevier Science, AmsterdamGoogle Scholar
  23. 23.
    Leo A, Hansch C, Jow PYC (1976) J Med Chem 19:611–615CrossRefGoogle Scholar
  24. 24.
    Pap T, Horvai G (2004) J Chromatogr A 1034:99–107CrossRefGoogle Scholar
  25. 25.
    Jones AC (2003) Ph.D. thesis. University of Wales, Cardiff, UKGoogle Scholar
  26. 26.
    Baggiani C, Anfossi L, Giovannoli C, Tozzi C (2004) J Chromatogr B 804:31–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C. Baggiani
    • 1
    Email author
  • L. Anfossi
    • 1
  • P. Baravalle
    • 1
  • C. Giovannoli
    • 1
  • G. Giraudi
    • 1
  1. 1.Bioanalytical Chemistry Laboratory, Department of Analytical ChemistryUniversity of TorinoTorinoItaly

Personalised recommendations