Analytical and Bioanalytical Chemistry

, Volume 388, Issue 8, pp 1573–1582 | Cite as

Modifying argon glow discharges by hydrogen addition: effects on analytical characteristics of optical emission and mass spectrometry detection modes

  • A. Martín
  • A. Menéndez
  • R. Pereiro
  • N. Bordel
  • A. Sanz-MedelEmail author


An overview of the effects produced by the presence of hydrogen in a glow discharge (GD), generated either in argon or in neon, is given. Extensive work related to the addition of hydrogen to GDs, coupled with optical emission spectrometry (OES) and mass spectrometry (MS), has been published in the last few years in an attempt to explain the processes involved in the discharge of mixed gases. Although numerous experimental results have already been explained theoretically, a complete understanding of the effects brought about by mixing hydrogen with argon (or another discharge inert gas) has not been reported yet. The use of theoretical models implemented using a computer has allowed the importance of some collisional and radiative processes in the inert gas plasma when hydrogen is present to be evaluated. This review shows, however, that both experimental work and theoretical work are still needed. The influence of small quantities of hydrogen on discharge parameters, such as electrical current or dc bias voltage, on crater shapes and on sputtering rates is thoroughly reviewed along with the effect on the analytical signals measured by OES and MS. Also, hydrogen-effect corrections needed to carry out proper calibrations for direct solid quantitative analyses are discussed.


Hydrogen induced changes in the Ar glow discharge reactions.


Glow discharge–optical emission spectrometry Glow discharge–mass spectrometry Hydrogen mixtures Sputtering rates Collisional/radiative processes 



Financial support from Plan Nacional de I+D+I (Spanish Ministry of Education and Science, and FEDER Programme) through the project MAT2003-09243-C02 is gratefully acknowledged. A.M. would like to acknowledge a grant (FPI) from the Spanish Ministry of Education and Science associated with the MAT2003-09243-C02 project.


  1. 1.
    Marcus RK, Broekaert JAC (2003) (eds) Glow discharge plasmas in analytical spectroscopy. Wiley, New YorkGoogle Scholar
  2. 2.
    Angeli J, Bengtson A, Bogaerts A, Hoffmann V, Hodoroaba VD, Steers EBM (2003) J Anal At Spectrom 18:670CrossRefGoogle Scholar
  3. 3.
    Winchester MR, Miller JK (2001) J Anal At Spectrom 16:122CrossRefGoogle Scholar
  4. 4.
    Fernández B, Pereiro R, Bordel N, Sanz-Medel A (2004) Anal Chem 76:1039CrossRefGoogle Scholar
  5. 5.
    Menéndez A, Bordel N, Pereiro R, Sanz-Medel A (2005) J Anal At Spectrom 20:233CrossRefGoogle Scholar
  6. 6.
    Marcus RK (2000) J Anal At Spectrom 9:1271CrossRefGoogle Scholar
  7. 7.
    Wagatsuma K (2001) Spectrochim Acta Part B 56:465CrossRefGoogle Scholar
  8. 8.
    Hartenstein ML, Christopher SJ, Marcus RK (1999) J Anal At Spectrom 14:1039CrossRefGoogle Scholar
  9. 9.
    Woo J, Moon D, Tanaka T, Matsuno M, Kawaguchi H (1996) Anal Sci 12:459Google Scholar
  10. 10.
    Hodoroaba V, Steers EBM, Hoffmann V, Wetzig K (2001) J Anal At Spectrom 16:43CrossRefGoogle Scholar
  11. 11.
    Giglio JJ, Caruso JA (1995) Appl Spectrosc 49:900CrossRefGoogle Scholar
  12. 12.
    Wagatsuma K, Honda H (2005) Spectrochim Acta Part B 60:1538CrossRefGoogle Scholar
  13. 13.
    Saito M (1997) Fresenius J Anal Chem 357:18CrossRefGoogle Scholar
  14. 14.
    Fernández B, Bordel N, Pérez C, Pereiro R, Sanz-Medel A (2002) J Anal At Spectrom 17:1549CrossRefGoogle Scholar
  15. 15.
    Fernández B, Bordel N, Pereiro R, Sanz-Medel A (2003) J Anal At Spectrom 18:151CrossRefGoogle Scholar
  16. 16.
    Smid P, Steers EBM, Weiss Z, Vlcek J (2003) J Anal At Spectrom 18:549CrossRefGoogle Scholar
  17. 17.
    Steers EBM (1997) J Anal At Spectrom 12:1033CrossRefGoogle Scholar
  18. 18.
    Wagatsuma K, Hirokawa K (1995) Spectrochim Acta Part B 50:109CrossRefGoogle Scholar
  19. 19.
    Wagatsuma K, Hirokawa K (1991) Spectrochim Acta Part B 46:269CrossRefGoogle Scholar
  20. 20.
    Hodoroaba VD, Hoffmann V, Steers EBM, Wetzig K (2000) J Anal At Spectrom 15:1075CrossRefGoogle Scholar
  21. 21.
    Payling R, Aeberhard M, Delfosse D (2001) J Anal At Spectrom 16:50CrossRefGoogle Scholar
  22. 22.
    Michler J, Aeberhard M, Velten D, Winter S, Payling R, Breme J (2004) Thin Solid Films 447:278CrossRefGoogle Scholar
  23. 23.
    Ratliff PH, Harrison WW (1995) Appl Spectrosc 49:863CrossRefGoogle Scholar
  24. 24.
    Ohorodnik SK, DeGendt S, Tong SL, Harrison WW (1993) J Anal At Spectrom 8:859CrossRefGoogle Scholar
  25. 25.
    Wänstrand O, Fella R, Axén N (1997) Surf Coat Technol 94:469CrossRefGoogle Scholar
  26. 26.
    Wänstrand O, Larsson M, Hedenqvist P (1999) Surf Coat Technol 111:247CrossRefGoogle Scholar
  27. 27.
    Bengtson A, Hänström S (1998) Steel Met Ind 47Google Scholar
  28. 28.
    Bogaerts A, Gijbels R (2000) J Anal At Spectrom 15:441CrossRefGoogle Scholar
  29. 29.
    Bogaerts A (2002) J Anal At Spectrom 17:768CrossRefGoogle Scholar
  30. 30.
    Hodoroaba VD, Hoffmann V, Steers EBM, Wetzig K (2000) J Anal At Spectrom 15:951CrossRefGoogle Scholar
  31. 31.
    Menéndez A, Pereiro R, Bordel N, Sanz-Medel A (2005) Spectrochim Acta Part B 60:824CrossRefGoogle Scholar
  32. 32.
    Menéndez A, Pereiro R, Bordel N, Sanz-Medel A (2006) J Anal At Spectrom 21:531CrossRefGoogle Scholar
  33. 33.
    Budtz-Jorgensen CV, Kringhoj P, Bottiger J (1999) Surf Coat Technol 116–119:938CrossRefGoogle Scholar
  34. 34.
    Menéndez A, Pisonero J, Pereiro R, Bordel N, Sanz-Medel A (2003) J Anal At Spectrom 18:557CrossRefGoogle Scholar
  35. 35.
    Hodoroaba VD, Steers EBM, Hoffmann V, Unger WES, Paatsch W, Wetzig K (2003) J Anal At Spectrom 18:521CrossRefGoogle Scholar
  36. 36.
    Steers EBM, Smid P, Weiss Z (2006) Spectrochim Acta Part B 61:414CrossRefGoogle Scholar
  37. 37.
    Obradovic BM, Kuraica MM, Dojcinovic IP, Cvetanovic N (2006) Czech J Phys 56:B971CrossRefGoogle Scholar
  38. 38.
    Weiss Z, Steers EBM, Smid P (2005) J Anal At Spectrom 20:839CrossRefGoogle Scholar
  39. 39.
    Steers EBM, Fielding RJ (1987) J Anal At Spectrom 2:239CrossRefGoogle Scholar
  40. 40.
    Wagatsuma K (1996) Z Phys D 37:231CrossRefGoogle Scholar
  41. 41.
    Pearse RWB, Gaydon AG (1950) The identification of molecular spectra. Chapman & Hall, LondonGoogle Scholar
  42. 42.
    Weiss Z (2006) Spectrochim Acta Part B 61:121CrossRefGoogle Scholar
  43. 43.
    Payling R, Michler J, Aeberhard M (2002) Surf Interface Anal 33:472CrossRefGoogle Scholar
  44. 44.
    Hoffmann V, Kasik M, Robinson PK, Venzago C (2005) Anal Bioanal Chem 381:173CrossRefGoogle Scholar
  45. 45.
    Jakubowski N, Stuewer D (1989) Fresenius Z Anal Chem 335:680CrossRefGoogle Scholar
  46. 46.
    Smithwick III RW, Lynch DW, Franklin JC (1993) J Am Soc Mass Spectrom 4:278CrossRefGoogle Scholar
  47. 47.
    Saito M (1991) Anal Sci 7:541Google Scholar
  48. 48.
    Saito M (1997) Anal Chim Acta 355:129CrossRefGoogle Scholar
  49. 49.
    Saito M (1995) Spectrochim Acta Part B 50:171CrossRefGoogle Scholar
  50. 50.
    Tanaka T, Matsuno M, Woo JC, Kawaguchi H (1996) Anal Sci 12:591Google Scholar
  51. 51.
    Mason RS, Miller PD, Mortimer IP (1997) Phys Rev E 55:7462CrossRefGoogle Scholar
  52. 52.
    Meulenbroeks RFG, van Beek AJ, Helvoort AJG, van de Sanden MCM, Schram DC (1994) Phys Rev E 49:4397CrossRefGoogle Scholar
  53. 53.
    Newman K, Mason RS, Williams DR, Mortimer IP (2004) J Anal At Spectrom 19:1192CrossRefGoogle Scholar
  54. 54.
    Mason RS, Miller PD, Mortimer IP, Mitchell DJ, Dash NA (2003) Phys Rev E 68:16408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Martín
    • 1
  • A. Menéndez
    • 2
  • R. Pereiro
    • 2
  • N. Bordel
    • 1
  • A. Sanz-Medel
    • 2
    Email author
  1. 1.Department of PhysicsUniversity of OviedoOviedoSpain
  2. 2.Department of Physical and Analytical Chemistry, Faculty of ChemistryUniversity of OviedoOviedoSpain

Personalised recommendations