Analytical and Bioanalytical Chemistry

, Volume 388, Issue 4, pp 901–907 | Cite as

Detection of antinuclear antibodies by a colloidal gold modified optical fiber: comparison with ELISA

  • Ning-Sheng Lai
  • Chun-Chien Wang
  • Hui-Ling Chiang
  • Lai-Kwan Chau
Original Paper


A fiberoptic evanescent-wave sensor has been developed for the measurement of antinuclear antibodies in sera from patients and healthy individuals. The sensor was constructed on the basis of modification of the unclad portion of an optical fiber with self-assembled gold colloids, where the colloidal gold surface was further functionalized with extractable nuclear antigens. Results show that detection of antinuclear antibodies by this sensor agrees quantitatively with the clinically accepted enzyme-linked immunosorbent assay (ELISA) method. This sensing platform has the following advantages: label-free and real-time detection capability, simple to construct and use, highly sensitive, and does not require a secondary antibody. The sensitivity of this platform is at least an order of magnitude higher than that of the ELISA method and thus may lead to a new direction in recognition of immune response.

Biomolecular binding of antinuclear antibodies (ANA) with extractable nuclear antigens (ENA)-functionalized gold nanoparticles results in a change of surface plasmon absorption. When light propagates in an optical fiber by multiple total internal reflection, such a change in signal can be significantly enhanced.


Antinuclear antibodies Fiberoptic biosensor Localized surface plasmon resonance Gold nanoparticles Enzyme-linked immunosorbent assay 



Support of this research by the National Science Council (Republic of China), Buddhist Dalin Tzu Chi General Hospital, and National Chung Cheng University through grant no. NSC 92-2320-B-320-024 is acknowledged.


  1. 1.
    Killard AJ, Deasy B, O’Kennedy R, Smyth MR (1995) Trends Anal Chem 14:257–266Google Scholar
  2. 2.
    Fritzler MJ (1996) Mol Biol Rep 23:133–145PubMedCrossRefGoogle Scholar
  3. 3.
    Emlen W, O’Neill L (1997) Arthritis Rheum 40:1612–1618PubMedCrossRefGoogle Scholar
  4. 4.
    Tan EM, Feltkamp TEW, Smolen JS, Butcher B, Dawkins R, Fritzler MJ, Gordon T, Hardin JA, Kalden JR, Maini RN, McDougal JS, Rothfield NF, Smeenk RJ, Takasaki Y, Wiik A, Wilson MR, Koziol JA (1997) Arthritis Rheum 40:1601–1611PubMedCrossRefGoogle Scholar
  5. 5.
    Dahle C, Skogh T, Aberg AK, Jalal AK, Olcen P (2004) J Autoimmun 22:241–248PubMedCrossRefGoogle Scholar
  6. 6.
    Tan EM, Smolen JS, McDougal JS, Butcher BT, Conn D, Dawkins R, Fritzler MJ, Gordon T, Hardin JA, Kalden JR, Lahita RG, Maini RN, Rothfield NF, Smeenk R, Takasaki Y, van Venrooij WJ, Wiik A, Wilson M, Koziol JA (1999) Arithrits Rheum 42:455–464CrossRefGoogle Scholar
  7. 7.
    Hoch SO (1989) In: Baldo BA, Tovert ER (eds) Protein blotting: methodology, research and diagnostic applications. Karger, Basel, pp 140–164Google Scholar
  8. 8.
    Cheng S-F, Chau L-K (2003) Anal Chem 75:16–21PubMedCrossRefGoogle Scholar
  9. 9.
    Chau L-K, Lin Y-F, Cheng S-F, Lin T-J (2006) Sens Actuators B 113:100–105CrossRefGoogle Scholar
  10. 10.
    Underwood S, Mulvaney P (1994) Langmuir 10:3427–3430CrossRefGoogle Scholar
  11. 11.
    Nath N, Chilkoti A (2002) Anal Chem 74:504–509PubMedCrossRefGoogle Scholar
  12. 12.
    Englebienne P, Hoonacker AV, Verhas M (2001) Analyst 126:1645–1651CrossRefGoogle Scholar
  13. 13.
    Frederix F, Friedt J-M, Choi K-H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) 75:6894–6900Google Scholar
  14. 14.
    Immco Diagnostics (2007) Product insert. Cited 9 Mar 2007
  15. 15.
    Schreiber E, Matthias P, Muller MM, Schaffner W (1989) Nucleic Acids Res 17:6419PubMedCrossRefGoogle Scholar
  16. 16.
    Henriksson G, Manthorpe R, Bredberg A (2000) Rheumatism 39:142–147CrossRefGoogle Scholar
  17. 17.
    Immco Diagnostics (2007) Product insert. Cited 9 Mar 2007
  18. 18.
    Immuno Concepts (2006) Package inserts. Cited 19 Apr 2006
  19. 19.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743CrossRefGoogle Scholar
  20. 20.
    Schmitt J, Machtle P, Eck D, Mohwald CA (1999) Langmuir 15:3256–3266CrossRefGoogle Scholar
  21. 21.
    Cheng S-F, Chau L-K, Pao K-C (2005) J Biomed Nanotechnol 1:143–150CrossRefGoogle Scholar
  22. 22.
    Hamburger M, Hodes S, Barland P (1977) Am J Med Sci 273:21PubMedCrossRefGoogle Scholar
  23. 23.
    Bossuyt X, Luyckx A (2005) Clin Chem 51:2426–2427PubMedCrossRefGoogle Scholar
  24. 24.
    Prime KL, Whitesides GM (1991) Science 252:1164–1167PubMedCrossRefADSGoogle Scholar
  25. 25.
    Lin T-J, Huang K-T, Liu C-Y (2006) Biosens Bioelectron 22:513–518PubMedCrossRefGoogle Scholar
  26. 26.
    Bange A, Halsall HB, Heineman WR (2005) Biosens Bioelectron 20:2488–2503PubMedCrossRefGoogle Scholar
  27. 27.
    Hsu W-T, Chau L-K, Chen P-L, Hsieh W-H (2006) Abstracts of papers, 9th world congress on biosensors, Toronto, Canada. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ning-Sheng Lai
    • 1
  • Chun-Chien Wang
    • 2
  • Hui-Ling Chiang
    • 1
  • Lai-Kwan Chau
    • 2
  1. 1.Department of Internal Medicine, Buddhist Dalin Tzu Chi General HospitalChia-YiTaiwan
  2. 2.Department of Chemistry and BiochemistryNational Chung Cheng UniversityChia-YiTaiwan

Personalised recommendations