Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 441–446 | Cite as

Molecularly imprinted sol–gel nanoparticles for mass-sensitive engine oil degradation sensing

  • Peter A. Lieberzeit
  • Adeel Afzal
  • Gerd Glanzing
  • Franz L. DickertEmail author
Original Paper


Titanate sol–gel layers imprinted with midchain carbonic acids have proven highly useful for detecting engine oil degradation processes owing to selective incorporation of oxidised base oil components. Synthesising the material from TiCl4 in CCl4 and precipitating with water leads to imprinted TiO2 nanoparticles with a diameter of 200–300 nm. Replacing the water by a 1 M ammonium hydroxide solution reduces the average particle size to 50–100 nm with retention of the interaction capabilities. Experiments with the latter solution revealed that the 100-nm particles take up substantially more analyte, indicating a size-dependent phenomenon. As the number of interaction sites within each material is the same, this cannot be a consequence of thermodynamics but must be one of accessibility. The sensor characteristic of water-precipitated particles towards engine oil degradation products shows substantially increased sensitivity and dynamic range compared with the corresponding thin films. Coating quartz crystal microbalances with such nanoparticle materials leads to engine oil degradation sensors owing to incorporation of acidic base oil oxidation products. Interaction studies over a large range of layer thicknesses revealed that both the absolute signal and the steepness of the correlation between the sensor signal and the layer height is 2 times higher for the particles.


Generation of molecularly imprinted sol–gel nanoparticles


Titanate sol–gel Nanoparticles Engine oil degradation sensor Mass-sensitive detection Sensitivity enhancement 


  1. 1.
    Chianella I, Karim K, Piletska EV, Preston C, Piletsky SA (2006) Anal Chim Acta 559:73–78CrossRefGoogle Scholar
  2. 2.
    Ye L, Haupt K (2004) Anal Bioanal Chem 378:1887–1897CrossRefGoogle Scholar
  3. 3.
    Hayden O, Lieberzeit PA, Blaas D, Dickert FL (2006) Adv Funct Mater 16:1269–1278CrossRefGoogle Scholar
  4. 4.
    Hayden O, Mann KJ, Krassnig S, Dickert FL (2006) Angew Chem Intl Ed Engl 45:2626–2629CrossRefGoogle Scholar
  5. 5.
    Sato A, Oshika T (1992) Lubr Eng 48:539–544Google Scholar
  6. 6.
    Agoston A, Ötsch C, Jakoby B (2005) Sens Actuators A 121:327–332CrossRefGoogle Scholar
  7. 7.
    Kauffmann RE, (1995) Lubr Eng 51:223–229Google Scholar
  8. 8.
    Lee HS, Wang SS, Smolenski DJ, Viola MB, Klusendorf EE (1994) Sens Actuators B 20:49CrossRefGoogle Scholar
  9. 9.
    Wang SS (2002) 86:122–126Google Scholar
  10. 10.
    Dickert FL, Forth P, Lieberzeit P, Voigt G (2000) Fresenius J Anal Chem 366:802–806CrossRefGoogle Scholar
  11. 11.
    Lieberzeit PA, Glanznig G, Leidl A, Voigt G, Dickert FL (2006) IEEE Sens J 6:529–535CrossRefGoogle Scholar
  12. 12.
    Dickert FL, Greibl W, Rohrer A, Voigt G (2001) Adv Mater 13:1327–1330CrossRefGoogle Scholar
  13. 13.
    Herold M, Tovar GEM, Gruber C, Dettling M, Sezgin S, Brunner H (2005) Polym Prepr 46:1125–1126Google Scholar
  14. 14.
    Ciardelly G, Borelli C, Silvestre D, Cristallini C, Barbani N, Giusti P (2006) Biosens Bioelectron 21:2329–2338CrossRefGoogle Scholar
  15. 15.
    Barasc M, Ogier J, Durant Y, Clavier J (2005) Polym Prepr 46:1146–1147Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Peter A. Lieberzeit
    • 1
  • Adeel Afzal
    • 1
  • Gerd Glanzing
    • 1
  • Franz L. Dickert
    • 1
    Email author
  1. 1.Department of Analytical Chemistry and Food ChemistryUniversity of ViennaViennaAustria

Personalised recommendations