Advertisement

Analytical and Bioanalytical Chemistry

, Volume 389, Issue 2, pp 447–454 | Cite as

‘Gate effect’ in templated polyacrylamide membranes influences the electrotransport of proteins and finds applications in proteome analysis

  • Alessandra BossiEmail author
  • Matteo Andreoli
  • Francesca Bonini
  • Sergey Piletsky
Original Paper

Abstract

Templating is an effective way for the structural modifications of a material and hence for altering its functional properties. Here protein imprinting was exploited to alter polymeric polyacrylamide (PAA) membranes. The sieving properties and selection abilities of the material formed were evaluated by studying the electrically driven transport of various proteins across templated PAA membranes. The sieving properties correlated with the templating process and depended on the quantity of template used during the polymerisation. For 1 mg/mL protein-templated membranes a ‘gate effect’ was shown, which induced a preferential migration of the template and of similar-size proteins. Such template preferential electrotransport was exploited for the selective removal of certain proteins in biological fluids prior to proteome analysis (depletion of albumin from human serum); the efficiency of the removal was demonstrated by analysing the serum proteome by two-dimensional electrophoresis experiments.

Figure

PAA templeted membrane for the electroremoval of serum albumin before proteome analysis

Keywords

Molecularly imprinted polymers Polyacrylamide membranes Electrotransport Human serum albumin depletion Proteome 

References

  1. 1.
    Assender H, Bliznyuk V, Porfyrakis K (2002) Science 297:973CrossRefGoogle Scholar
  2. 2.
    Chailapakul O, Crooks RM (1993) Langmuir 9:884–888CrossRefGoogle Scholar
  3. 3.
    Kumar A, Biebuyck HA, Whitesides GM (1994) Langmuir 10:1498CrossRefGoogle Scholar
  4. 4.
    Shaaya E (1976) Anal Biochem 75:325–328CrossRefGoogle Scholar
  5. 5.
    Righetti PG, Brost BCW, Snyder R (1981) J Biochem Biophys Methods 4:347–363CrossRefGoogle Scholar
  6. 6.
    Righetti PG, Caglio S, Saracchi M, Quaroni S (1992) Electrophoresis 13:587–592CrossRefGoogle Scholar
  7. 7.
    Krause S (1972) J Macromol Sci Rev Macromol Chem C 7:251Google Scholar
  8. 8.
    De Gennes P-G (1979) J Phys 40:L69Google Scholar
  9. 9.
    Asnaghi D, Giglio M, Bossi A, Righetti PG (1995) J Chem Phys 102:9763–9769CrossRefGoogle Scholar
  10. 10.
    Buter R, Tan YY, Challa G (1972) J Polym Sci A 10:1031–1049CrossRefGoogle Scholar
  11. 11.
    Spvbek J, Schneider R (1987) Adv Colloid Interface Sci 27:81–150CrossRefGoogle Scholar
  12. 12.
    Hulvat JF, Stupp SI (2003) Angew Chem Int Ed Engl 42:778–781CrossRefGoogle Scholar
  13. 13.
    Pieranski P, Sittler L, Sotta P, Imperor-Clerc M (1986) Eur Phys J E 5:317–328CrossRefGoogle Scholar
  14. 14.
    Hyde S, Andersson S, Larsson K, Blum Z, Landh T, Lidin S, Ninham BW (1997) (eds) The language of shape. The role of curvature in condensed matter: physics, chemistry. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Antonietti M, Caruso RA, Göltner CG, Weissenberger MC (1999) Macromolecules 32:1383–1389CrossRefGoogle Scholar
  16. 16.
    Rill RL, Locke BR, Liu Y, Dharia J, Van Winkle D (1996) Electrophoresis 17:1304–1312CrossRefGoogle Scholar
  17. 17.
    Hjerten S, Liao JL, Nakazato K (1997) Chromatographia 44:227–234CrossRefGoogle Scholar
  18. 18.
    Mosbach K (1994) Trends Biochem Sci 19:9–14CrossRefGoogle Scholar
  19. 19.
    Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Nature 361:645–647CrossRefGoogle Scholar
  20. 20.
    Haupt K, Mosbach K (1998) Trends Biotechnol 16:468–475CrossRefGoogle Scholar
  21. 21.
    Righetti PG, Castagna A, Herbert B (2003) Proteomics 3:1397–1407CrossRefGoogle Scholar
  22. 22.
    Chertov O, Simpson JT, Biragyn A, Conrads TP, Veenstra TD, Fisher RJ (2005) Expert Rev Proteomics 2:139–145CrossRefGoogle Scholar
  23. 23.
    Steel LF, Trotter MG, Nakajima PB, Mattu TS, Gonye G, Block T (2003) Mol Cell Proteomics 2:262–270Google Scholar
  24. 24.
    Ogston AG, Sherman TF (1958) Nature 181:482–483CrossRefGoogle Scholar
  25. 25.
    Noble RD (1992) J Membr Sci 75:121–129CrossRefGoogle Scholar
  26. 26.
    Yan M, Ramstrom K (eds) Molecularly imprinted materials, science and technology. Dekker, New York (in press)Google Scholar
  27. 27.
    Oral E, Peppas NA (2004) Polymer 45:6163–6173CrossRefGoogle Scholar
  28. 28.
    Righetti PG, Wenisch E, Faupel M (1989) J Chromatogr 475:293–309CrossRefGoogle Scholar
  29. 29.
    Righetti PG, Bossi A, Wenisch E, Orsini G (1996) J Chromatogr B 699:105–115CrossRefGoogle Scholar
  30. 30.
    Ulbrich M (2004) J Chromatogr B 804:113–125CrossRefGoogle Scholar
  31. 31.
    Piletsky SA, Dubey IY, Fedoryak DM, Kukhar VP (1990) Biopolym Kletka 6:55–58Google Scholar
  32. 32.
    Piletsky SA, Butovich IA, Kukhar VP (1992) Zh Anal Khim 47:1681–1684Google Scholar
  33. 33.
    Piletsky SA, Parhometz YP, Panasyuk TL, El’skaya AV (1994) Sens Actuators B 8/19:629–631CrossRefGoogle Scholar
  34. 34.
    van Reis R, Zydney A (2001) Curr Opin Biotechnol 12:208–211CrossRefGoogle Scholar
  35. 35.
    Righetti PG, Caravaggio T (1976) J Chromatogr 127:1–28CrossRefGoogle Scholar
  36. 36.
    Molloy MP, Herbert BR, Williams KL, Gooley AA (1999) Electrophoresis 20:701–704CrossRefGoogle Scholar
  37. 37.
    Casassa EF (1976) Macromolecules 9:182–185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alessandra Bossi
    • 1
    Email author
  • Matteo Andreoli
    • 1
  • Francesca Bonini
    • 1
  • Sergey Piletsky
    • 2
  1. 1.Department of Science and TechnologyUniversity of VeronaVeronaItaly
  2. 2.Cranfield HealthCranfield UniversityBedfordshireUK

Personalised recommendations