Analytical and Bioanalytical Chemistry

, Volume 388, Issue 3, pp 665–673 | Cite as

Porous imprinted polymer membranes prepared by phase separation in compressed liquid CO2

  • Quanqiu Zhang
  • Takayuki Kusunoki
  • Qun Xu
  • Hongying WangEmail author
  • Takaomi KobayashiEmail author
Original Paper


Phase separation of poly(acrylonitrile–co-methacrylic acid) in compressed liquid CO2 resulted in formation of a porous imprinted membrane which preferentially adsorbed uracil (URA). The cross-section of the membrane was observed by SEM, which revealed its porous structure. The mechanical strength of the membrane indicated formation of a rigid matrix with high tensile strength (4.4 N mm−2). The imprinted membranes bound highly selectively to URA (12.8 μmol g−1) but binding to dimethyluracil (DMURA), thymine, and cytosine was less (0.7, 0.8, and 0.9 μmol g−1, respectively). When DMURA was similarly used to prepare an imprinted membrane in liquid CO2 there was less binding of DMURA to the imprinted membrane obtained. The URA-imprinted membranes were evaluated by IR spectroscopy before and after URA extraction. The results indicated that hydrogen bonding was the mechanism of binding of URA to the imprinted membrane. Competitive binding studies were performed with binary mixtures of URA and its analogues. The URA-imprinted membrane enabled good separation of URA from cytosine, DMURA, and thymine, with separation factors of 3.0, 3.8, and 2.5, respectively. It was confirmed that the compressed liquid CO2 contributed to efficient formation of template substrate sites in the URA-imprinted membrane.


Molecularly imprinted membrane Molecular recognition Compressed CO2 Membrane adsorbent URA 



This work was partially funded by the Japanese government (Grant No 1530034 for scientific research (B)). The authors gratefully acknowledge the JASSO short-term student exchange promotion program (2004) for one of the authors, Quanqiu Zhang. The authors are grateful for financial support by the 21st century COE program, Japan.


  1. 1.
    Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–15CrossRefGoogle Scholar
  2. 2.
    Wulff G (1995) Angew Chem Int Ed Engl 34:1812–1832CrossRefGoogle Scholar
  3. 3.
    Odabasi M, Say R, Denizli A (2007) Mat Sci Eng C 27:90–99CrossRefGoogle Scholar
  4. 4.
    Lin HY, Hsu CY, Thomas JL, Wang SE, Chen HC, Chou TC (2006) Biosens Bioelectron 22:534–543CrossRefGoogle Scholar
  5. 5.
    Silverstri D, Barbani N, Cristallini C, Giusti P, Ciardelli G (2006) J Membr Sci 282:284–295CrossRefGoogle Scholar
  6. 6.
    Tappura K, Lundin IV, Albers WM (2007) Biosens Bioelectron 22:912–919CrossRefGoogle Scholar
  7. 7.
    Tamayo FG, Martin-Esteban A (2005) J Chromatogr A 1098:116–122CrossRefGoogle Scholar
  8. 8.
    Kobayashi T (2005) Scaffold imprinting. In: Yan M, Ramstrom O (eds) Molecularly imprinted materials science and technology, chap 10. Marcel Dekker, New York, pp 285–302Google Scholar
  9. 9.
    Kobayashi T, Wang HY, Fujii N (1995) Chem Lett 927–928Google Scholar
  10. 10.
    Wang HY, Kobayashi T, Fujii N (1996) Langmuir 12:4850–4856CrossRefGoogle Scholar
  11. 11.
    Kobayashi T, Fukaya T, Abe M, Fujii N (2002) Langmuir 18:2866–2872CrossRefGoogle Scholar
  12. 12.
    Wang HY, Xia SL, Sun H, Liu YK, Cao SK, Kobayashi T (2004) J Chromatogr B 804:127–134CrossRefGoogle Scholar
  13. 13.
    Reddy PS, Kobayashi T, Abe M, Fujii N (2002) Eur Polym J 38:521–529CrossRefGoogle Scholar
  14. 14.
    Kho YW, Kalika DS, Knutson BL (2001) Polym 42:6119–6127CrossRefGoogle Scholar
  15. 15.
    Matsuyama H, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K (2001) J Membr Sci 194:157–163CrossRefGoogle Scholar
  16. 16.
    Matsuyama H, Yamamoto A, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K (2002) J Membr Sci 204:81–87CrossRefGoogle Scholar
  17. 17.
    Kielczynski R, Bryjak M (2005) Sep Purif Technol 41:231–235CrossRefGoogle Scholar
  18. 18.
    Oktar O, Caglar P, Seitz WR (2005) Sens Actuators B 104:179–185CrossRefGoogle Scholar
  19. 19.
    Suedee R, Srichana T, Sangpagai C, Tunthana C, Vanichapichat P (2004) Anal Chim Acta 504:89–100CrossRefGoogle Scholar
  20. 20.
    Piletsky SA, Matuschewki H, Schedler U, Wilpert A, Piletska EV, Thiele TA, Ulbricht M (2000) Macromolecules 22:3092–3098CrossRefGoogle Scholar
  21. 21.
    Yoshikawa M, Guiver MD, Robertson GP (2005) J Mol Struct 739:41–46CrossRefGoogle Scholar
  22. 22.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504CrossRefGoogle Scholar
  23. 23.
    Spivak D, Gilmore MA, Shea KJ (1997) J Am Chem Soc 119:4388–4393CrossRefGoogle Scholar
  24. 24.
    Reverchon E, Cardea S (2004) J Membr Sci 240:187–195CrossRefGoogle Scholar
  25. 25.
    Reverchon E, Cardea S (2005) J Supercrit Fluids 35:140–146CrossRefGoogle Scholar
  26. 26.
    Xia SL, Wang HY, Kobayashi T (2004) Mat Res Soc Symp Proc 787:103–108Google Scholar
  27. 27.
    Mulder M (1996) Basic principles of membrane technology, chap 3. Kluwer, pp 123–139Google Scholar
  28. 28.
    Porta GD, Volpe MC, Reverchon E (2006) J Supercrit Fluids 37:409–416CrossRefGoogle Scholar
  29. 29.
    Auton M, Ferreon ACM, Bolen DW (2006) J Mol Biol 361:983–992CrossRefGoogle Scholar
  30. 30.
    Reverchon E, Schiavo Rappo E, Cardea S (2006) Polym Eng Sci 188–196Google Scholar
  31. 31.
    (a) Sellergren B, Molecularly imprinted polymers, Man-made mimics of antibodies and their applications in analytical chemistry, Elsevier, Amsterdam, 2001, pp 126, (b) in Ref 4, K Shimizu, ch 16 pp 419Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryNagaoka University of TechnologyNiigataJapan
  2. 2.Material Engineering SchoolZhengzhou UniversityZhengzhouChina

Personalised recommendations