Analytical and Bioanalytical Chemistry

, Volume 388, Issue 3, pp 717–722 | Cite as

CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe ions in aqueous solution

Original Paper

Abstract

Water-soluble cadmium sulfide (CdS) quantum dots (QDs) capped by mercaptoacetic acid were synthesized by aqueous-phase arrested precipitation, and characterized by transmission electron microscopy, spectrofluorometry, and UV-Vis spectrophotometry. The prepared luminescent water-soluble CdS QDs were evaluated as fluorescence probes for the detection of highly reactive hydrogen selenide ions (HSe ions). The quenching of the fluorescence emission of CdS QDs with the addition of HSe ions is due to the elimination of the S2− vacancies which are luminescence centers. Quantitative analysis based on chemical interaction between HSe ions and the surface of CdS QDs is very simple, easy to develop, and has demonstrated very high sensitivity and selectivity features. The effect of foreign ions (common anions and biologically relevant cations) on the fluorescence of the CdS QDs was examined to evaluate the selectivity. Only Cu2+ and S2− ions exhibit significant effects on the fluorescence of CdS QDs. With the developed method, we are able to determine the concentration of HSe ions in the range from 0.10 to 4.80 μmol L−1, and the limit of detection is 0.087 μmol L−1. The proposed method was successfully applied to monitor the obtained HSe ions from the reaction of glutathione with selenite. To the best of our knowledge, this is the first report on fluorescence analysis of HSe ions in aqueous solution.

Figure

CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe- ions in aqueous solution

Keywords

CdS quantum dots Fluorescence Hydrogen selenide ions Detection Quenching 

Notes

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 2007502).

References

  1. 1.
    Schwarz K, Foltz CM (1957) J Am Chem Soc 79:3292–3296CrossRefGoogle Scholar
  2. 2.
    Medina D, Shepherd FS (1984) Cancer Lett 24:227–234CrossRefGoogle Scholar
  3. 3.
    Medina D (1986) Adv Exp Med Biol 206:465–472Google Scholar
  4. 4.
    Rayman MP (2000) Lancet 356:233–241CrossRefGoogle Scholar
  5. 5.
    Schrauzer GN (2000) Cell Mol Life Sci 57:1864–1873CrossRefGoogle Scholar
  6. 6.
    Gromer S, Gross JH (2002) J Biol Chem 227:9701–9706CrossRefGoogle Scholar
  7. 7.
    Ganther HE (1971) Biochemistry 10:4089–4098CrossRefGoogle Scholar
  8. 8.
    Hsieh HS, Ganther HE (1975) Biochemistry 14:1632–1636CrossRefGoogle Scholar
  9. 9.
    Esaki N, Nakamura T, Tanaka H, Soda K (1982) J Biol Chem 257:4386–4391Google Scholar
  10. 10.
    Ganther HE (1999) Carcinogenesis 20:1657–1666CrossRefGoogle Scholar
  11. 11.
    Turner RJ, Weiner JH, Taylor DE (1998) BioMetals 11:223–227CrossRefGoogle Scholar
  12. 12.
    Leinfelder W, Forchhammer K, Veprek B, Zehelein E, Bock A (1990) Proc Natl Acad Sci USA 87:543–547CrossRefGoogle Scholar
  13. 13.
    Veres Z, Tsai L, Scholz TD, Politino M, Balaban RS, Stadtman TC (1990) Proc Natl Acad Sci USA 89:2975–2979CrossRefGoogle Scholar
  14. 14.
    Lacourciere GM, Stadtman TC (1998) J Biol Chem 273:30921–30926CrossRefGoogle Scholar
  15. 15.
    Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC (2000) J Biol Chem 275:23769–23773CrossRefGoogle Scholar
  16. 16.
    Sasakura C, Suzuki KT (1998) J Inorg Biochem 71:159–162CrossRefGoogle Scholar
  17. 17.
    Gailer J, George GN, Pickering IJ, Madden S, Prince RC, Yu EY, Denton MB, Younis HS, Aposhian HV (2000) Chem Res Toxicol 13:1135–1142CrossRefGoogle Scholar
  18. 18.
    Shiobara Y, Suzuki KT (1998) J Chromtogr B 710:49–56CrossRefGoogle Scholar
  19. 19.
    Farina M, Brandao R, Lara FS, Soares FAA, Souza DO, Rocha JBT (2003) Toxicol Lett 139:55–66CrossRefGoogle Scholar
  20. 20.
    Sun YC, Chang YC, Su CK (2006) Anal Chem 78:2640–2645CrossRefGoogle Scholar
  21. 21.
    Encinar JR, Ouerdane L, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Anal Chem 75:3765–3774CrossRefGoogle Scholar
  22. 22.
    Uden PC (2002) Anal Bioanal Chem 373:422–431CrossRefGoogle Scholar
  23. 23.
    Montes-Bayon M, Grant TD, Meija J, Caruso JA (2002) J Anal At Spectrom 17:1015–1023CrossRefGoogle Scholar
  24. 24.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  25. 25.
    Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) Trends Anal Chem 25:207–218CrossRefGoogle Scholar
  26. 26.
    Winter JO, Gomez N, Gatzert S, Schmidt CE, Korgel BA (2005) Colloid Surface A 254:147–157CrossRefGoogle Scholar
  27. 27.
    Isarov AV, Chrysochoos J (1997) Langmuir 13:3142–3149CrossRefGoogle Scholar
  28. 28.
    Tian Y, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) J Phys Chem 100:8927–8939CrossRefGoogle Scholar
  29. 29.
    Kamat PV, Patrick B (1992) J Phys Chem 96:6829–6834CrossRefGoogle Scholar
  30. 30.
    Wu XC, Bittner AM, Kern K (2005) J Phys Chem B 109:230–239CrossRefGoogle Scholar
  31. 31.
    Kamat PV, Dimitrijevic NM, Fessenden RW (1987) J Phys Chem 91:396–401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemistry and the Key Laboratory of Analytical Sciences of the Ministry of EducationCollege of Chemistryand Chemical Engineering, Xiamen UniversityXiamenChina

Personalised recommendations