Advertisement

Analytical and Bioanalytical Chemistry

, Volume 388, Issue 1, pp 297–305 | Cite as

Differentiation of organically and conventionally produced milk by stable isotope and fatty acid analysis

  • Joachim MolkentinEmail author
  • Anette Giesemann
Original Paper

Abstract

Increasing sales of organic milk mean intensified tests for authenticity are required. In addition to comprehensive documentation, analytical methods to identify organic milk, and thus to differentiate it from conventional milk, are needed for consumer protection. Because the composition of milk is fundamentally dependent on the feeding of the cows, thirty-five samples from both production systems in Germany, including farm and retail milk, were collected within 12 months, to reflect seasonal variation, and appropriate properties were analysed. Fatty acid analysis enabled organic and conventional milk to be completely distinguished, because of the higher α-linolenic acid (C18:3ω3) and eicosapentaenoic acid (C20:5ω3) content of the former. Organic milk fat contained at least 0.56% C18:3ω3 whereas the maximum in conventional milk was 0.53%. Because of the parallel seasonal course of the C18:3ω3 content of organic and conventional retail samples, however, time-resolved comparison at the five sampling dates resulted in a clearer difference of 0.34 ± 0.06% on average. Analysis of stable carbon isotopes (δ13C) also enabled complete distinction of both types of milk; this can be explained by the different amounts of maize in the feed. For conventional milk fat δ13C values were −26.6‰ or higher whereas for organic milk fat values were always lower, with a maximum of −28.0‰. The time-resolved average difference was 4.5 ± 1.0‰. A strong negative correlation (r = −0.92) was found between C18:3ω3 and δ13C. Analysis of a larger number of samples is required to check the preliminary variation ranges obtained in this pilot study and, probably, to adjust the limits. Stable isotopes of nitrogen (δ15N) or sulfur (δ34S) did not enable assignment of the origin of the milk; in cases of ambiguity, however, some trends observed might be useful in combination with other properties.

Figure

Correlation (r = −0.92) between δ13C value and C18:3ω3 content of milk fat from different production systems

Keywords

Stable isotopes Fatty acids Differentiation Identification Organic milk production Conventional milk production 

Notes

Acknowledgements

The authors thank Birte Fischer, Bärbel Krumbeck, and Martina Heuer for assistance with the analytical work, and Kurt Einhoff, Ernst Johannsen, and Klaus Pabst for help providing and preparing the milk samples.

References

  1. 1.
    ZMP (2006) Erzeugerpreise für Bio-Milch 2005 stabil—Verbraucherpreise gestiegen; Umsatzanteil von Bio-Milch wächst—Angebot an Rohware wird knapp. http://www.zmp.de
  2. 2.
    IFOAM (2005) Norms for organic production and processing. http://www.ifoam.org
  3. 3.
    Bioland (2005) Bioland Richtlinien für Pflanzenbau, Tierhaltung und Verarbeitung. http://www.bioland.de
  4. 4.
    Demeter (2006) Erzeugungsrichtlinien für Acker- und Pflanzenbau sowie die Viehwirtschaft. http://www.demeter.de
  5. 5.
    Naturland (2005) Naturland Richtlinien Erzeugung. http://www.naturland.de
  6. 6.
  7. 7.
    Council Regulation (EEC) No. 2092/91 (1991) Official Journal L198:1–15Google Scholar
  8. 8.
    Morel I, Wyss U, Collomb M, Bütikofer U (2005) Agrarforschung 12:496–501Google Scholar
  9. 9.
    Precht D (1994) Kieler Milchwirtsch Forschungsber 46:65–79Google Scholar
  10. 10.
    Jahreis G, Fritsche J, Steinhart H (1996) Fett/Lipid 98:356–359CrossRefGoogle Scholar
  11. 11.
    Precht D, Molkentin J (1997) Milchwissenschaft 52:564–568Google Scholar
  12. 12.
    Precht D, Molkentin J (1997) Nahrung—Food 41:330–335CrossRefGoogle Scholar
  13. 13.
    Stanton C, Lawless F, Kjellmer G, Harrington D, Devery R, Connolly JF, Murphy J (1997) J Food Sci 62:1083–1086CrossRefGoogle Scholar
  14. 14.
    Kelly ML, Kolver ES, Bauman DE, Van Amburgh ME, Muller LD (1998) J Dairy Sci 81:1630–1636Google Scholar
  15. 15.
    Dhiman TR, Anand GR, Satter LD, Pariza M (1999) J Dairy Sci 82:2146–2156Google Scholar
  16. 16.
    Kay JK, Mackle TR, Auldist MJ, Thomson NA, Bauman DE (2004) J Dairy Sci 87:369–378Google Scholar
  17. 17.
    Kraft J, Collomb M, Möckel P, Sieber R, Jahreis G (2003) Lipids 38:657–664CrossRefGoogle Scholar
  18. 18.
    Nuernberg K, Nuernberg G, Ender K, Lorenz S, Winkler K, Rickert R, Steinhart H (2002) Eur J Lipid Sci Technol 104:463–471CrossRefGoogle Scholar
  19. 19.
    Dannenberger D, Nuernberg G, Scollan N, Schabbel W, Steinhart H, Ender K, Nuernberg K (2004) J Agric Food Chem 52:6607–6615CrossRefGoogle Scholar
  20. 20.
    Precht D, Frede E, Hagemeister H, Timmen H (1985) Fette Seifen Anstr 87:117–126CrossRefGoogle Scholar
  21. 21.
    Rossmann A (2001) Food Rev Int 17:347–381CrossRefGoogle Scholar
  22. 22.
    DeNiro MJ, Epstein S (1978) Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  23. 23.
    DeNiro MJ, Epstein S (1981) Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  24. 24.
    Peterson BJ, Fry B (1987) Annual Review Ecological System 18:293–320CrossRefGoogle Scholar
  25. 25.
    O’Leary MH (1981) Phytochemistry 20:553–567CrossRefGoogle Scholar
  26. 26.
    Metges C, Kempe K, Schmidt HL (1990) Brit J Nutr 63:187–196CrossRefGoogle Scholar
  27. 27.
    Bahar B, Monahan FJ, Moloney AP, O’Kiely P, Scrimgeour CM, Schmidt O (2005) Rapid Commun Mass Spec 19:1937–1942CrossRefGoogle Scholar
  28. 28.
    Boner M, Förstel H (2004) Anal Bioanal Chem 378:301–310CrossRefGoogle Scholar
  29. 29.
    Minagawa M, Wada E (1984) Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  30. 30.
    Yoneyama T, Kouno K, Yazaka J (1990) Soil Sci Plant Nutr 36:667–675Google Scholar
  31. 31.
    Krouse HR, Stewart JWB, Grinenko VA (1991) In Krouse HR, Grinenko VA (eds) SCOPE 43 Stable Isotopes. Natural and anthropogenic sulfur in the environment. Wiley, Chichester, pp 267–306Google Scholar
  32. 32.
    Molkentin J, Meisel H, Lehmann I, Rehbein H (2006) Eur Food Res Technol DOI  10.1007/s00217-006-0314-0
  33. 33.
    International standard IDF 1D:1996 (1996) Milk—Determination of fat content (Röse Gottlieb reference method), IDF, BrusselsGoogle Scholar
  34. 34.
    International standard IDF 105:1981 (1981) Milk—Determination of fat content (Gerber butyrometers), IDF, BrusselsGoogle Scholar
  35. 35.
    Siegfriedt RK, Wiberley JS, Moore RW (1951) Anal Chem 23:1008–1011CrossRefGoogle Scholar
  36. 36.
    Giesemann A, Jäger HJ, Norman AL, Krouse HR, Brand WA (1994) Anal Chem 66:2816–2819CrossRefGoogle Scholar
  37. 37.
    Bergamo P, Fedele E, Iannibelli L, Marzillo G (2003) Food Chem 82:625–631CrossRefGoogle Scholar
  38. 38.
    Ellis KA, Innocent G, Grove-White D, Cripps P, McLean WG, Howard CV, Mihm M (2006) J Dairy Sci 89:1938–1950CrossRefGoogle Scholar
  39. 39.
    Schmidt HL, Rossmann A, Voerkelius S, Schnitzler WH, Georg M, Grassmann J, Zimmermann G, Winkler R (2005) Isot Environ Health S 41:223–228CrossRefGoogle Scholar
  40. 40.
    Knights JS, Zhao FJ, Spiro B, McGrath SP (2000) J Environ Qual 29:1867–1874CrossRefGoogle Scholar
  41. 41.
    Moloney AP, Quilter M, Bahar B, Scrimgeour CM, Begley IS, Schmidt O (2005) Food Chemistry 91:545–549CrossRefGoogle Scholar
  42. 42.
    Kornexl BE, Werner T, Rossmann A, Schnidt H-L (1997) Z Lebensm Unters Forsch A 205:19–24CrossRefGoogle Scholar
  43. 43.
    Weiss D, Kienberger H, Eichinger HM (2006) Fettsäuremuster in der Milch in Abhängigkeit praxisüblicher Fütterungstrategien. Interdisziplinäres Symposium Omega 3 Weidemilch – Chancen und Möglichkeiten für Milch- und Rindfleischerzeugnisse vom Grünland“, KemptenGoogle Scholar
  44. 44.
    Leiber F, Kreuzer M, Scheeder MRL, Wettstein H-R (2005) In: Heß J, Rahmann G (Ed.) Ende der Nische, Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau. Kassel University press GmbH, Kassel/GermanyGoogle Scholar
  45. 45.
    de Wit J, Wagenaar JP, de Vries A, Baars T (2006) Proc Joint Organic Congress 2006, Odense, DenmarkGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Dairy Chemistry and TechnologyFederal Research Centre for Nutrition and FoodKielGermany
  2. 2.Institute of AgroecologyFederal Agricultural Research CentreBraunschweigGermany

Personalised recommendations