Analytical and Bioanalytical Chemistry

, Volume 388, Issue 2, pp 385–389 | Cite as

Determination of nitrogen in boron carbide by instrumental photon activation analysis

  • Silke MerchelEmail author
  • Achim Berger
Original Paper


Boron carbide is widely used as industrial material, because of its extreme hardness, and as a neutron absorber. As part of a round-robin exercise leading to certification of a new reference material (ERM-ED102) which was demanded by the industry we analysed nitrogen in boron carbide by inert gas fusion analysis (GFA) and instrumental photon activation analysis (IPAA) using the 14N(γ,n)13N nuclear reaction. The latter approach is the only non-destructive method among all the methods applied. By using photons with energy below the threshold of the 12C(γ,n)11C reaction, we hindered activation of matrix and other impurities. A recently installed beam with a very low lateral activating flux gradient enabled us to homogeneously activate sample masses of approximately 1 g. Taking extra precautions, i.e. self-absorption correction and deconvolution of the complex decay curves, we calculated a nitrogen concentration of 2260 ± 100 μg g−1, which is in good agreement with our GFA value of 2303 ± 64 μg g−1. The values are the second and third highest of a rather atypical (non-S-shape) distribution of data of 14 round-robin participants. It is of utmost importance for the certification process that our IPAA value is the only one not produced by inert gas fusion analysis and, therefore, the only one which is not affected by a possible incomplete release of nitrogen from high-melting boron carbide.


Twin-Detector system for analyzing spatially extended samples


Nitrogen Reference materials Gas fusion analysis Photon activation analysis 



This article is dedicated to Wolf Görner on the occasion of his 65th birthday. We thank Oskar Haase for providing the high-energy photon beam, Christian Rauch for assistance with the measurements, and Thomas Dudzus, Heinrich Kipphardt, and Peter Barth for discussing determinations of light elements. Three anonymous referees helped to substantially improve the quality of this paper.


  1. 1.
    Engelmann C, Kraft G, Pauwels J (1985) Modern methods for the determination of non-metals in non-ferrous metals. Walter de Gruyter, BerlinGoogle Scholar
  2. 2.
    Grallath E (1980) Fresenius Z Anal Chem 300:97–106CrossRefGoogle Scholar
  3. 3.
    Gruner W (2002) Erzmetall 55:151–157Google Scholar
  4. 4.
    Meyers P (1968) Eur Comm Rpt EUR-3896-3896 d-f-e:195–224Google Scholar
  5. 5.
    Pauwels J (1979) Berichte der Tagung in Darmstadt (1979) Veranstaltet vom Gemeinschaftsausschuß “Gase in Metallen” der Deutschen Gesellschaft für Metallkunde e.V. und der GDMB Gesellschaft Deutscher Metallhütten und Bergleute e.V., pp 137–159Google Scholar
  6. 6.
    Lange B, Kipphardt H, Recknagel S, Meier KA (2002) Accred Qual Assur 7:19–23CrossRefGoogle Scholar
  7. 7.
    Matschat R, Dette A (2004) Final certification report on BAM S-003 silicon carbide powderGoogle Scholar
  8. 8.
    Kipphardt H, Dudzus T, Meier KA, Recknagel S, Hedrich M, Matschat R (2002) Mater Trans 43:98–100CrossRefGoogle Scholar
  9. 9.
    Schmitt BF, Dudzus T, Fusban H-U (1981) Mikrochim Acta 1:57–61CrossRefGoogle Scholar
  10. 10.
    Görner W, Berger A, Jost P (1998) J Radioanal Nucl Chem 234:91–94CrossRefGoogle Scholar
  11. 11.
    Görner W, Alber D, Berger A, Haase O, Monse G, Segebade C (2005) J Radioanal Nucl Chem 263:791–796CrossRefGoogle Scholar
  12. 12.
    Berger A, Goerner W, Haase O (2000) J Radioanal Nucl Chem 244:517–522CrossRefGoogle Scholar
  13. 13.
    Segebade C, Weise H-P, Lutz GJ (1988) Photon activation analysis. Walter de Gruyter, BerlinGoogle Scholar
  14. 14.
    Görner W, Berger A, Ecker KH, Haase O, Hedrich M, Segebade C, Weidemannn G, Wermann G (2001) J Radioanal Nucl Chem 248:45–52CrossRefGoogle Scholar
  15. 15.
    Stromatt RW, Delvin WL (1978) Experience in the analysis of nuclear-grade boron carbide. Hanford Engineering Development Laboratory Report TME-77-100Google Scholar
  16. 16.
    Gosgrove GV, Shears EC (1960) Analyst 85:448–449Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.CEREGE (Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement)-UMR CNRS 6635Aix en Provence cedex 04France

Personalised recommendations