Analytical and Bioanalytical Chemistry

, Volume 388, Issue 2, pp 463–474 | Cite as

Simultaneous determination of speciation parameters of Cu, Pb, Cd and Zn in model solutions of Suwannee River fulvic acid by pseudopolarography

  • Parthasarathi Chakraborty
  • Ismail I. Fasfous
  • John Murimboh
  • Chuni L. Chakrabarti
Original Paper


There is a growing awareness of the importance of quantitative determinations of speciation parameters of the trace metals Cu, Zn, Cd and Pb in aqueous samples containing chemically heterogeneous humic substances, especially when they are present together, interacting with one another and competing for specific binding sites of the humic substances. Such determinations require fundamental knowledge and understanding of these complex interactions, gained through basic laboratory-based studies of well-characterized humic substances in model solutions. Since the chemical heterogeneity of humic substances plays an important role in the thermodynamics (stability) and kinetics (lability) of trace metal competition for humic substances, a metal speciation technique such as pseudopolarography that can reveal the special, distinctive nature of metal complexation is required, and it was therefore used in this study. A comparison of the heterogeneity parameters (Γ) for Zn(II), Cd(II), Pb(II) and Cu(II) complexes in model solutions of Suwannee River fulvic acid (SRFA) shows that ΓCdZnPbCu, suggesting that SRFA behaves as a relatively homogeneous complexant for Zn(II) and Cd(II), whereas it behaves as a relatively heterogeneous complexant for Pb(II) and an even more heterogeneous complexant for Cu(II) under the experimental conditions used. The order of values of logK* (from the differential equilibrium function, DEF) for the trace metals at pH 5.0 follow the sequence:
$$\log K^{ * }_{{{\text{Cu}}}} > \log K^{ * }_{{{\text{Pb}}}} > \log K^{ * }_{{{\text{Zn}}}} > \log K^{ * }_{{{\text{Cd}}}} $$
These results are in good agreement with the literature values. The results of this work suggest the possibility of simultaneously determining several metals in a sample in a single experiment, and hence in a shorter time than required for multiple experiments.


Simultaneous determination Suwannee River fulvic acid Trace metal speciation Metal complexation Pseudopolarography 



Research grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and NSERC Metal In The Human Environment–Research Network (MITHE–RN) are gratefully acknowledged.


  1. 1.
    Melaku S, Wondimu T, Dams R, Moens L (2004) Can J Anal Sci Spectrosc 49(6):374–384Google Scholar
  2. 2.
    Sarmiento-Gonzalez, Alejandro MG, Juan M, Tejerina L, Jose M, Paz JJ, Sanz MA (2005) Anal Bioanal Chem 382(4):1001–1009CrossRefGoogle Scholar
  3. 3.
    Yin J, Jiang Z, Chang G, Hu B (2005) Anal Chim Acta 540(2):333–339CrossRefGoogle Scholar
  4. 4.
    Lee K-H, Oshima M, Motomizu S (2002) Analyst 127(6):769–774CrossRefGoogle Scholar
  5. 5.
    Huang LS, Lin KC (2006) Anal Sci 22(10):1375–1378CrossRefGoogle Scholar
  6. 6.
    Kujirai O, Yamada K (1996) Fresenius J Anal Chem 354(4):428–431Google Scholar
  7. 7.
    Kujirai O, Yamada K (1994) Fresenius J Anal Chem 348(11):719–723CrossRefGoogle Scholar
  8. 8.
    Cheng CJ, Akagi T, Haraguchi H (1987) Anal Chim Acta 198:173–181CrossRefGoogle Scholar
  9. 9.
    Berman SS, McLaren JW, Willie SN (1980) Anal Chem 52(3):488–492CrossRefGoogle Scholar
  10. 10.
    Mochizuki M, Hondo R, Ueda F (2002) Biol Trace Elem Res 87(1–3):211–223CrossRefGoogle Scholar
  11. 11.
    Aiva de Oliveira A, de Moraes M, Gomes N, Jose A, Lima EC (2002) Atom Spectrosc 23(2):39–43Google Scholar
  12. 12.
    Chiu C, Sung YH, Huang SD (2003) Spectrochim Acta B 58B(3):575–580CrossRefGoogle Scholar
  13. 13.
    Sen Gupta JG (1993) J Anal Atom Spectrom 8(1):93–101CrossRefGoogle Scholar
  14. 14.
    Locatelli C (2006) Anal Chim Acta 557(1–2):70–77CrossRefGoogle Scholar
  15. 15.
    Silva PRM, El Khakani MA, Chaker M, Dufresne A, Courchesne F (2001) Sens Actuators B B76(1–3):250–257CrossRefGoogle Scholar
  16. 16.
    Barbeira PJS, Stradiotto NR (1998) Fresenius J Anal Chem 361(5):507–509CrossRefGoogle Scholar
  17. 17.
    Izquierdo A, Luque de Castro MD, Valcarcel M (1994) Electroanalysis 6(10):894–902CrossRefGoogle Scholar
  18. 18.
    Opydo J (1989) Water Air Soil Pollut 45(1–2):43–48Google Scholar
  19. 19.
    Vermeer AWP, McCulloch JK, Van Riemsdijk WH, Koopal LK (1999) Environ Sci Technol 33:3892–3897CrossRefGoogle Scholar
  20. 20.
    Langsto WJ, Bryan GW (1984) In: Kramer CJM, Duinker JC (eds) Complexation of trace metals in natural waters. Martinus Nijhoff/Dr. W. Junk, The Hague, The Netherlands, p 375Google Scholar
  21. 21.
    Brown GK, Cabaniss SE, MacCarthy P, Leenheer JA (1999) Anal Chim Acta 402:183–193CrossRefGoogle Scholar
  22. 22.
    Morel FMM, Hering JG (1993) Principles of aquatic chemistry. Wiley, New York, p 377Google Scholar
  23. 23.
    Morel FMM, Hering JG (1993) Principles of aquatic chemistry. Wiley, New York, p 362Google Scholar
  24. 24.
    Woller A, Garraud H, Boisson J, Dorthe AM, Fodor P, Donard OFX (1998) J Anal Atom Spectrom 13(2):141–149CrossRefGoogle Scholar
  25. 25.
    Winistoerfer D (1995) Commun Soil Sci Plant Anal 26(7–8):1073–1093CrossRefGoogle Scholar
  26. 26.
    Agraz R, Sevilla MT, Hernandez L (1993) Anal Chim Acta 273(1–2):205–212CrossRefGoogle Scholar
  27. 27.
    Haraldsson C, Lyven B, Pollak M, Skoog A (1993) Anal Chim Acta 284:327–336CrossRefGoogle Scholar
  28. 28.
    Ammann, Adrian A (2002) Anal Bioanal Chem 372:448–452CrossRefGoogle Scholar
  29. 29.
    Heltai G, Percsich K, Fekete I, Barabas B, Jozsa T (2000) Microchem J 67:43–51CrossRefGoogle Scholar
  30. 30.
    Temminghoff EJM, Plette ACC, Van Eck R, Van Riemsdijk WH (2000) Anal Chim Acta 417:149–157CrossRefGoogle Scholar
  31. 31.
    Sedykh EM, Starshinova NP, Bannykh LN, Ershova EYu, Venitsianov EV (2000) Z Anal Khim 55:344–349CrossRefGoogle Scholar
  32. 32.
    Wang J (1985) Stripping analysis: principles, instrumentation and application. VCH, Deerfield Beach, FLGoogle Scholar
  33. 33.
    Copeland TR, Skogerboe RK (1974) Anal Chem 46:1257ACrossRefGoogle Scholar
  34. 34.
    Filella M, Buffle J, van Leeuwen HP (1990) Anal Chim Acta 232:209CrossRefGoogle Scholar
  35. 35.
    Gamble DS, Langford CH (1988) Environ Sci Technol 22:1325CrossRefGoogle Scholar
  36. 36.
    Gamble DS (1970) Can J Chem 48:2662CrossRefGoogle Scholar
  37. 37.
    DeFord D, Hume N (1951) J Am Chem Soc 73:5321CrossRefGoogle Scholar
  38. 38.
    Buffle J, Tercier-Waeber ML (2000) In situ voltammetry: concepts and practices for trace analysis and speciation. In: Buffle J, Horvai G (eds) In situ monitoring of aquatic systems: chemical analysis and speciation. Wiley, New York, pp 290–291Google Scholar
  39. 39.
    Buffle J (1988) Complexation reactions in aquatic systems: an analytical approach. Ellis Horwood, Chichester, UK, p 473Google Scholar
  40. 40.
    van Leeuwen HP, Buffle J (1990) J Electroanal Chem 296:359CrossRefGoogle Scholar
  41. 41.
    Ritchie JD, Perdue (2003) Geochim Cosmochim Acta 67:85CrossRefGoogle Scholar
  42. 42.
    Sherrod PH (2001) NLREG reference manual. Phillip H. Sherrod, Brentwood, TNGoogle Scholar
  43. 43.
    Shuman SS Jr, Woodward GP (1976) Anal Chem 48:13CrossRefGoogle Scholar
  44. 44.
    Brown SD, Kowalski BR (1997) Anal Chem 51:2133CrossRefGoogle Scholar
  45. 45.
    Town RM, Filella M (2000) J Electroanal Chem 488:1–16CrossRefGoogle Scholar
  46. 46.
    Gregor JE, Powell HKJ (1998) Anal Chim Acta 211:141CrossRefGoogle Scholar
  47. 47.
    Locatelli C, Torsi G (1998) Electroanalysis 10:904CrossRefGoogle Scholar
  48. 48.
    Murimboh J (2002) Speciation dynamics in the freshwater environment: Unifying concepts in metal speciation and bioavailability. Ph.D. Thesis, Carleton University, Ottawa, ON, CanadaGoogle Scholar
  49. 49.
    Pinheiro JP, Mota AM, Simões Gonçalves ML (1994) Anal Chim Acta 284:525CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Parthasarathi Chakraborty
    • 1
  • Ismail I. Fasfous
    • 1
  • John Murimboh
    • 2
  • Chuni L. Chakrabarti
    • 1
  1. 1.Ottawa-Carleton Chemistry Institute, Department of ChemistryCarleton UniversityOttawaCanada
  2. 2.Department of ChemistryAcadia UniversityWolfvilleCanada

Personalised recommendations