Analytical and Bioanalytical Chemistry

, Volume 388, Issue 1, pp 121–129 | Cite as

Adsorption and self-assembly of aromatic carboxylic acids on Au/electrolyte interfaces

Original Paper

Abstract

The adsorption and self-assembly of benzoic acid (BA), isophthalic acid (IA), and trimesic acid (TMA) on Au(111) single crystals and on Au(111-25 nm) quasi-single crystalline film electrodes have been investigated in 0.1 M HClO4 by combining in situ surface-enhanced infrared reflection absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM) with cyclic voltammetry. All three acids are physisorbed on the electrode surface in a planar orientation at negative charge densities. Excursion to positive charge densities (or more positive potentials) causes an orientation change from planar to perpendicular. Chemisorbed structures are formed through the coordination of a deprotonated carboxyl group to the positively charged electrode surface. The three acid molecules assemble in different ordered patterns, which are controlled by π-stacking (BA) or intermolecular hydrogen bonds between COOH groups (IA, TMA). A detailed analysis of the potential and time dependencies of the ν(C=O), νs(OCO), and ν(C–OH) vibration modes shows that the strength of lateral interactions increases upon chemisorption with an increasing number of COOH groups in the sequence of BA<IA<TMA. The vibration bands shift to higher wavenumbers due to dipole–dipole coupling, Stark tuning, and electron back donation from the electrode to COO. In addition, an “indirect” electron donation to the COOH groups takes place via the conjugated molecular skeleton superimposed on the intermolecular hydrogen bonding.

Figure

In-situ STM images of the physisorbed and chemisorbed adlayers of isophthalic acid on Au(111)-(1 × 1), the corresponding cyclic voltammogram and principle of the ATR-SEIRAS set-up

Keywords

Aromatic carboxylic acid Adsorption Self-assembly Electrochemistry SEIRAS STM 

Notes

Acknowledgements

The work was supported by the Volkswagen foundation under grant No. I80–879, IFMIT and the Research Center Jülich. The authors acknowledge the skilful help of U. Linke and of H. J. Bierfeld in preparing the gold single crystals and gold film electrodes.

References

  1. 1.
    Bailey M, Brown CJ (1967) Acta Crystallogr B 22:387CrossRefGoogle Scholar
  2. 2.
    Alcala R, Martinez-Carrera S (1972) Acta Crystallogr B 25:1671CrossRefGoogle Scholar
  3. 3.
    De Feyter S, Gesquiere A, Abdel-Mottaleb MM, Grim PCM, De Shryver FC, Meiners C, Sieffert M, Valiyaveettil S, Müllen K (2000) Acc Chem Res 33:520CrossRefGoogle Scholar
  4. 4.
    Melendres R, Hamilton AD (1998) Top Curr Chem 197:97Google Scholar
  5. 5.
    Barth JV, Costantini G, Kern K (2005) Nature 437:671CrossRefGoogle Scholar
  6. 6.
    Herbstein FH (1996) In: Atwood JL, MacNico DD, Vögtle DD, Lehn JM (eds) Comprehenive supramolecular chemistry, vol 6. Pergamon, New York, pp 61Google Scholar
  7. 7.
    Kolotuchin SV, Thiessen PA, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1999) Chem Eur J 5(9):2537CrossRefGoogle Scholar
  8. 8.
    Chatterjee S, Pedireddi VR, Ranganathan A, Rao CNR (2000) J Mol Structure 520:107CrossRefGoogle Scholar
  9. 9.
    Barth JV, Wechesser J, Lin N, Dmitriev A, Kern K (2003) Appl Phys A 76:645CrossRefGoogle Scholar
  10. 10.
    Ermer O, Neudörfl J (2001) Chem Eur J 7:4961CrossRefGoogle Scholar
  11. 11.
    Dai JC, Hu SM, Wu XT, Fu ZY, Du WX, Zhang HH, Sun RQ (2003) New J Chem 27:94CrossRefGoogle Scholar
  12. 12.
    Melendez RE, Shrama CVK, Zaworotko MJ, Bauer C, Rogers RD (1996) Angew Chem Int Ed Engl 35:2213CrossRefGoogle Scholar
  13. 13.
    Lin N, Dmitriev A, Weckesser J, Barth JV, Kern K (2002) Angew Chem Int Ed Engl 41:4779CrossRefGoogle Scholar
  14. 14.
    Messina P, Dmitriev A, Lin N, Spillmann H, Abel M, Barth JV, Kern K (2002) J Am Chem Soc 124:14000CrossRefGoogle Scholar
  15. 15.
    Ishikawa Y, Ohira A, Sakata M, Hirayama C, Kunitake MJ (2002) Chem Soc Chem Commun 2652Google Scholar
  16. 16.
    Su GJ, Zhang HM, Wan LJ, Bai CL, Wandlowski T (2004) J Phys Chem B 108:1931CrossRefGoogle Scholar
  17. 17.
    Ikezawa Y, Sekiguchi R, Kitazume T (2000) Electrochim Acta 46:731CrossRefGoogle Scholar
  18. 18.
    Li HQ, Roscoe SG, Lipkowski J (1999) J Electroanal Chem 478:67CrossRefGoogle Scholar
  19. 19.
    Ikezawa Y, Yoshida A, Sekiguchi R (2000) Electrochim Acta 46:769CrossRefGoogle Scholar
  20. 20.
    Lee MW, Kim MS, Kim K (1997) J Mol Struct 415:93CrossRefGoogle Scholar
  21. 21.
    Dretschkow T, Wandlowski T (2003) Top Appl Phys 85:259Google Scholar
  22. 22.
    Schultz ZD, Gewirth AA (2005) Anal Chem 77:7373CrossRefGoogle Scholar
  23. 23.
    Wandlowski T, Ataka K, Pronkin S, Diesing D (2004) Electrochim Acta 49:1233CrossRefGoogle Scholar
  24. 24.
    Pronkin S, Wandlowski T (2003) J Electroanal Chem 550–551:131CrossRefGoogle Scholar
  25. 25.
    Li HQ, Roscoe SG, Lipkowski J (2000) J Solution Chem 29:987CrossRefGoogle Scholar
  26. 26.
    Osawa M, Ikeda M (1991) J Phys Chem 95:9914CrossRefGoogle Scholar
  27. 27.
    Han B, Li Z, Pronkin S, Wandlowski T (2004) Can J Chem 82(10):1481CrossRefGoogle Scholar
  28. 28.
    Li Z, Han B, Wandlowski T (2005) Langmuir 21:6915CrossRefGoogle Scholar
  29. 29.
    Li Z, Han B, Wandlowski T (2007) (in preparation)Google Scholar
  30. 30.
    de Feyter S, Gesquiere A, Klapper M, Müllen K, Schryver FC (2003) Nano Lett 3:1485CrossRefGoogle Scholar
  31. 31.
    Arenas JF, Marcos JI (1979) Spectrochim Acta 35A:355Google Scholar
  32. 32.
    Gonzalez-Sanchez F (1957) Spectrochim Acta 12:17CrossRefGoogle Scholar
  33. 33.
    Lide DR (ed) (2001) In: Handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton, pp 8–45Google Scholar
  34. 34.
    Dean JA (1985) In: Lange’s handbook of chemistry, 13th edn. McGraw-Hill, pp 5–42Google Scholar
  35. 35.
    Osawa M (1997) Bull Chem Soc Jpn 70:2861CrossRefGoogle Scholar
  36. 36.
    Osawa M (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Theory and instrumentation. Wiley, Chichister, p 785Google Scholar
  37. 37.
    Nichols R (1992) In: Lipkowski J, Ross PN (eds) Adsorption of molecules at electrodes. VCH, New York, p 347Google Scholar
  38. 38.
    Lambert DK (1996) Electrochim Acta 41:623CrossRefGoogle Scholar
  39. 39.
    Ashley K, Pons S (1988) Chem Rev 88:673CrossRefGoogle Scholar
  40. 40.
    Ataka K, Osawa M (1999) J Electroanal Chem 460:188CrossRefGoogle Scholar
  41. 41.
    Wandlowski T, Ataka K, Mayer D (2002) Langmuir 18:4331CrossRefGoogle Scholar
  42. 42.
    Noda H, Wan LJ, Osawa M (2001) Phys Chem Chem Phys 3:3336CrossRefGoogle Scholar
  43. 43.
    Kwon YJ, Son DH, Ahn SJ, Kim MS, Kim K (1994) J Phys Chem 98:8481CrossRefGoogle Scholar
  44. 44.
    Kim SH, Ahn SJ, Kim K (1996) J Phys Chem 100:7174CrossRefGoogle Scholar
  45. 45.
    Colthup NB, Daley LH, Wiberly SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, BostonGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Bio-and Nanosystems (IBN-3) and Center of Nanoelectronic Systems for Information Technology (CNI)Research Center JülichJülichGermany

Personalised recommendations