Analytical and Bioanalytical Chemistry

, Volume 387, Issue 8, pp 2655–2662 | Cite as

Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips

  • Boon-Siang Yeo
  • Thomas Schmid
  • Weihua Zhang
  • Renato Zenobi
Original Paper


The influence of dielectric substrates on the Raman scattering activities of Ag overlayers has been investigated. Materials with low refractive indices, such as SiO2, SiOx and AlF3, were found to provide suitable supporting platforms for Ag films to give strong surface-enhanced Raman scattering for dye molecules when illuminated at 488 nm. This finding was then extended to tip-enhanced Raman scattering (TERS). Huge enhancements of 70–80×, corresponding to net enhancements of >104, were observed for brilliant cresyl blue test analyte when Ag-coated tips made from or precoated with low refractive index materials were applied. The yield of fabricated tips that significantly enhance the Raman signals was found to be close to 100%. These findings provide crucial steps towards the use of TERS as a robust technique for rapid chemical imaging with nanometer spatial resolution.


Silver-coated dielectric tips for tip-enhanced Raman scattering (TERS) are capable of more than 10,000-fold enhancement


Nanoscale chemical analysis Surface-enhanced Raman spectroscopy Tip-enhanced Raman spectroscopy Refractive index Surface plasmon resonance 



We would like to thank the Electron Microscopy Center at ETH Zürich (EMEZ), and Frank Krumeich for performing the SEM analyses as well as Urs Stauffer and Laure Aeschimann (University of Neuchâtel) for supplying the SiO2 AFM probes. We would also like to acknowledge the Gebert–Rüf Foundation (grant nr. P-085/03) and Deutsche Forschungsgemeinschaft (TS) for financial support of this project.


  1. 1.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136CrossRefGoogle Scholar
  2. 2.
    Anderson N, Anger P, Hartschuh A, Novotny L (2006) Nano Lett 6:744–749CrossRefGoogle Scholar
  3. 3.
    Kikteva T, Star D, Zhao ZH, Baisley TL, Leach GW (1999) J Phys Chem B 103:1124–1133CrossRefGoogle Scholar
  4. 4.
    Vannier C, Yeo BS, Melanson JE, Zenobi R (2006) Rev Sci Instrum 77:023104CrossRefGoogle Scholar
  5. 5.
    Yeo BS, Zhang W, Vannier C, Zenobi R (2006) Appl Spectrosc 60:1142–1147CrossRefGoogle Scholar
  6. 6.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Comm 183:333–336CrossRefGoogle Scholar
  7. 7.
    Wang JJ, Saito Y, Batchelder DN, Kirkham J, Robinson C, Smith DA (2005) Appl Phys Lett 86:263111CrossRefGoogle Scholar
  8. 8.
    Pan DH, Klymyshyn N, Hu DH, Lu HP (2006) Appl Phys Lett 88:093121CrossRefGoogle Scholar
  9. 9.
    Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311–317CrossRefGoogle Scholar
  10. 10.
    Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chemphyschem 7:1428–1430CrossRefGoogle Scholar
  11. 11.
    Stöckle RM, Deckert V, Fokas C, Zenobi R (2000) Appl Spectrosc 54:1577–1583CrossRefGoogle Scholar
  12. 12.
    Schatz GC, Van Duyne RP (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York, pp 759–774Google Scholar
  13. 13.
    Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250CrossRefGoogle Scholar
  14. 14.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) J Phys–Condens Mat 14:R597–R624CrossRefGoogle Scholar
  15. 15.
    Emory SR, Haskins WE, Nie SM (1998) J Am Chem Soc 120:8009–8010CrossRefGoogle Scholar
  16. 16.
    Richards D, Milner RG, Huang F, Festy F (2003) J Raman Spectrosc 34:663–667CrossRefGoogle Scholar
  17. 17.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335:369–374CrossRefGoogle Scholar
  18. 18.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) J Chem Phys 116:6755–6759CrossRefGoogle Scholar
  19. 19.
    Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Faraday Discuss 132:9–26CrossRefGoogle Scholar
  20. 20.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Phys Chem B 105:2343–2350CrossRefGoogle Scholar
  21. 21.
    Xu G, Tazawa M, Jin P, Nakao S (2005) Appl Phys A 80:1535–1540CrossRefGoogle Scholar
  22. 22.
    Xu G, Tazawa M, Jin P, Nakao S, Yoshimura K (2003) Appl Phys Lett 82:3811–3813CrossRefGoogle Scholar
  23. 23.
    Philipp HR (1985) In: Palik ED (ed) Handbook of optical constants of solids, 1st edn. Academic, London, pp 765–769Google Scholar
  24. 24.
    Schneider S, Brehm G, Freunscht P (1995) Phys Status Solidi B 189:37–42CrossRefGoogle Scholar
  25. 25.
    Pettinger B, Picardi G, Schuster R, Ertl G (2002) Single Mol 3:285–294CrossRefGoogle Scholar
  26. 26.
    Saito Y, Wang JJ, Batchelder DN, Smith DA (2003) Langmuir 19:6857–6861CrossRefGoogle Scholar
  27. 27.
    Norrod KL, Rowlen KL (1998) Anal Chem 70:4218–4221CrossRefGoogle Scholar
  28. 28.
    Li M, Lin YC, Wu CC, Liu HS (2005) Nucl Acids Res 33:e184CrossRefGoogle Scholar
  29. 29.
    Schlegel VL, Cotton TM (1991) Anal Chem 63:241–247CrossRefGoogle Scholar
  30. 30.
    Heitmann W (1970) Thin Solid Films 5:61–67CrossRefGoogle Scholar
  31. 31.
    Bradford AP, Hass G, McFarlan M, Ritter E (1965) Appl Opt 4:971–976CrossRefGoogle Scholar
  32. 32.
    Cohen LF, Brown R, Milton MJT, Smith WE (eds) (2006) Faraday Discuss 132:1–340Google Scholar
  33. 33.
    Domke KF, Zhang D, Pettinger B (2006) J Am Chem Soc 128:14721–14727CrossRefGoogle Scholar
  34. 34.
    Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Phys Rev B 73:193406CrossRefGoogle Scholar
  35. 35.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2002) J Chem Phys 117:1296–1301CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Boon-Siang Yeo
    • 1
  • Thomas Schmid
    • 1
  • Weihua Zhang
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations