Analytical and Bioanalytical Chemistry

, Volume 388, Issue 1, pp 29–45

Raman spectroscopy on transition metals

  • Bin Ren
  • Guo-Kun Liu
  • Xiao-Bing Lian
  • Zhi-Lin Yang
  • Zhong-Qun Tian
Review

Abstract

Surface-enhanced Raman spectroscopy (SERS) has developed into one of the most important tools in analytical and surface sciences since its discovery in the mid-1970s. Recent work on the SERS of transition metals concluded that transition metals, other than Cu, Ag, and Au, can also generate surface enhancement as high as 4 orders of magnitude. The present article gives an overview of recent progresses in the field of Raman spectroscopy on transition metals, including experimental, theory, and applications. Experimental considerations of how to optimize the experimental conditions and calculate the surface enhancement factor are discussed first, followed by a very brief introduction of preparation of SERS-active transition metal substrates, including massive transition metal surfaces, aluminum-supported transition metal electrodes, and pure transition metal nanoparticle assembled electrodes. The advantages of using SERS in investigating surface bonding and reaction are illustrated for the adsorption and reaction of benzene on Pt and Rh electrodes. The electromagnetic enhancement, mainly lightning-rod effect, plays an essential role in the SERS of transition metals, and that the charge-transfer effect is also operative in some specific metal–molecule systems. An outlook for the field of Raman spectroscopy of transition metals is given in the last section, including the preparation of well-ordered or well-defined nanostructures, and core-shell nanoparticles for investigating species with extremely weak SERS signals, as well as some new emerging techniques, including tip-enhanced Raman spectroscopy and an in situ measuring technique.

Figure

Electric-field enhancement of a SERS-active Rh surface decorated with small nanohemispheres

Keywords

Interface/surface analysis Raman spectroscopy Nanoparticles/nanotechnology Hydrocarbons Kinetics Metals 

References

  1. 1.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163–166Google Scholar
  2. 2.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20Google Scholar
  3. 3.
    Albrecht MG, Creighton JA (1978) J Am Chem Soc 99:5215–5216Google Scholar
  4. 4.
    Aroca RF (2006) Surface-enhanced vibrational spectroscopy. Wiley, BerlinGoogle Scholar
  5. 5.
    Cotton TM (1988) Adv Spectrosc 16:91–153Google Scholar
  6. 6.
    Garrell RL (1989) Anal Chem 61:401A–411AGoogle Scholar
  7. 7.
    Pemberton JE (1991) In: Abruna HD (ed) Electrochemical interfaces: modern technique for in-situ interface characterization. VCH, Berlin, pp 193–263Google Scholar
  8. 8.
    Birke RL, Lu T, Lombardi JR (1991) In: Varma R, Selman JR (eds) Techniques for characterization of electrodes and electrochemical processes. Wiley, New York, pp 211–277Google Scholar
  9. 9.
    Pettinger B (1992) In: Lipkowski J, Ross PN (eds) Adsorption at electrode surface. VCH, New York, pp 285–345Google Scholar
  10. 10.
    Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250Google Scholar
  11. 11.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957–2975Google Scholar
  12. 12.
    Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463–9483Google Scholar
  13. 13.
    Tian ZQ, Ren B (2004) Annu Rev Phys Chem 55:197–229Google Scholar
  14. 14.
    Baker GA, Moore DS (2005) Anal Bioanal Chem 382:1751–1769Google Scholar
  15. 15.
    Moskovits M (1985) Rev Mod Phys 57:783–826Google Scholar
  16. 16.
    Kerker M (1984) Acc Chem Res 17:271–277Google Scholar
  17. 17.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143–1212Google Scholar
  18. 18.
    Lombardi JR, Birke RL, Lu TH, Xu J (1986) J Chem Phys 84:4174–4180Google Scholar
  19. 19.
    Cline MP, Barber PW, Chang RK (1986) J Opt Soc Am B 3:15–21Google Scholar
  20. 20.
    Van Duyne RP, Haushalter JP (1983) J Phys Chem 87: 2999–3003Google Scholar
  21. 21.
    Oblonsky LJ, Devine TM, Ager JW, Perry SS, Mao XL, Russo RE (1994) J Electrochem Soc 141:3312–3317Google Scholar
  22. 22.
    Fleischmann M, Tian ZQ (1987) J Electroanal Chem 217:385–395Google Scholar
  23. 23.
    Fleischmann M, Tian ZQ, Li LJ (1987) J Electroanal Chem 217:397–410Google Scholar
  24. 24.
    Aramaki K, Ohi M, Uehara J (1992) J Electrochem Soc 139:1525–1529Google Scholar
  25. 25.
    Leung LWH, Weaver MJ (1987) J Electroanal Chem 217:367–384Google Scholar
  26. 26.
    Leung LWH, Weaver MJ (1987) J Am Chem Soc 109:5113–5119Google Scholar
  27. 27.
    Zou S, Weaver MJ (1998) Anal Chem 70:2387–2395Google Scholar
  28. 28.
    Zou S, Weaver MJ, Li XQ, Ren B, Tian ZQ (1999) J Phys Chem B 103:4218–4222Google Scholar
  29. 29.
    Weaver MJ, Zou S, Chan HYH (2000) Anal Chem 72:38A–47AGoogle Scholar
  30. 30.
    Park S, Yang P, Corredor P, Weaver MJ (2002) J Am Chem Soc 124:2428–2429Google Scholar
  31. 31.
    Zou SZ, Weaver MJ (1999) J Phys Chem B 103:2323–2326Google Scholar
  32. 32.
    Cooney RP, Fleischmann M, Hendra PJ (1977) J Chem Soc Chem Commun 235–237Google Scholar
  33. 33.
    Pettinger B, Tiedemann U (1987) J Electroanal Chem 228:219–228Google Scholar
  34. 34.
    Pettinger B, Friedrich A, Tiedemann U (1990) J Electroanal Chem 280:49–59Google Scholar
  35. 35.
    Bryant MA, Loa SL, Pemberton JE (1992) Langmuir 8:753–756Google Scholar
  36. 36.
    Taylor CE, Pemberton JE, Goodman GG, Schoenfisch MH (1999) Appl Spectrosc 53:1212–1221Google Scholar
  37. 37.
    Maeda T, Sasaki Y, Horie C, Osawa M (1993) J Electron Spectrosc Relat Phenom 64/65:381–389Google Scholar
  38. 38.
    Bilmes SA, Rubim JC, Otto A, Arvia AJ (1989) Chem Phys Lett 159:89–96Google Scholar
  39. 39.
    Bilmes SA (1990) Chem Phys Lett 171:141–146Google Scholar
  40. 40.
    Shannon C, Campion A (1988) J Phys Chem 92:1385–1387Google Scholar
  41. 41.
    Yamada H, Yamamoto Y (1981) Chem Phys Lett 77:520–522Google Scholar
  42. 42.
    Yamada H, Yamamoto Y (1983) Surf Sci 134:71–90Google Scholar
  43. 43.
    Tian ZQ, Ren B (2003) In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry. Wiley-VCH, Weinheim, pp 572–659Google Scholar
  44. 44.
    Tian ZQ, Ren B, Mao BW (1997) J Phys Chem B 101:1338–1346Google Scholar
  45. 45.
    Huang QJ, Yao JL, Gu RA, Tian ZQ (1997) Chem Phys Lett 271:101–106Google Scholar
  46. 46.
    Cao PG, Yao JL, Ren B, Mao BW, Gu RA, Tian ZQ (2000) Chem Phys Lett 316:1–5Google Scholar
  47. 47.
    Wu DY, Xie Y, Ren B, Yan JW, Mao BW, Tian ZQ (2001) Phys Chem Comm 18:1–3Google Scholar
  48. 48.
    Ren B, Lin XF, Yan JW, Mao BW, Tian ZQ (2003) J Phys Chem B 107:899–902Google Scholar
  49. 49.
    Liu Z, Yang ZL, Cui L, Ren B, Tian ZQ (2007) J Phys Chem C 111:1170–1175Google Scholar
  50. 50.
    Guo L, Huang QJ, Li XY, Yang SH (2001) Phys Chem Chem Phys 3:1661–1665Google Scholar
  51. 51.
    Gómez R, Pérez JM, Solla-Gullón J, Montiel V, Aldaz A (2004) J Phys Chem B 108:9943–9949Google Scholar
  52. 52.
    Gómez R, Solla-Gullón J, Pérez JM, Aldaz A (2005) ChemPhysChem 6:2017–2021Google Scholar
  53. 53.
    Gómez R, Solla-Gullón J, Pérez JM, Aldaz A (2005) J Raman Spectrosc 36:613–622Google Scholar
  54. 54.
    Zettsu N, McLellan JM, Wiley B, Yin YD, Li ZY, Xia YN (2005) Angew Chem Int Ed 45:1288–1292Google Scholar
  55. 55.
    Xiong YJ, McLellan JM, Chen JY, Yin YD, Li ZY, Xia YN (2005) J Am Chem Soc 127:17118–17127Google Scholar
  56. 56.
    McLellan JM, Xiong YJ, Hu M, Xia YN (2006) Chem Phys Lett 417:230–234Google Scholar
  57. 57.
    Kim NH, Kim K (2004) Chem Phys Lett 393:478–482Google Scholar
  58. 58.
    Kim NH, Kim K (2005) J Raman Spectrosc 36:623–628Google Scholar
  59. 59.
    Ren B, Lin XF, Jiang YX, Cao PG, Xie Y, Huang QJ, Tian ZQ (2003) Appl Spectrosc 57:419–427Google Scholar
  60. 60.
    Gu W, Ren B, Gu RA, Tian ZQ (2007) (in preparation)Google Scholar
  61. 61.
    Zuo C, Jagodzinski PW (2005) J Phys Chem B 109:1788–1793Google Scholar
  62. 62.
    Li JF, Yang ZL, Ren B, Liu GK, Fang PP, Jiang YX, Wu DY, Tian ZQ (2006) Langmuir 22:10372–10379Google Scholar
  63. 63.
    Tian ZQ, Yang ZL, Ren B, Li JF, Zhang Y, Lin XF, Hu JW, Wu DY (2006) Faraday Discuss 132:159–170Google Scholar
  64. 64.
    Cai WB, Ren B, Li XQ, She CX, Liu FM, Cai XW, Tian ZQ (1998) Surf Sci 406:9–22Google Scholar
  65. 65.
    Steinruck HP, Huber W, Pache T, Menzel D (1989) Surf Sci 218:293–316Google Scholar
  66. 66.
    Somorjai CA (1994) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  67. 67.
    Lehwald S, Ibach H, Demuth JE (1978) Surf Sci 78:577–590Google Scholar
  68. 68.
    Haq S, King DA (1996) J Phys Chem 100:16957–16965Google Scholar
  69. 69.
    Lin RF, Koestner RJ, Van Hove MA, Somorjai GA (1983) Surf Sci 134:161–183Google Scholar
  70. 70.
    Neumann M, Mack JU, Bertel E, Netzer FP (1985) Surf Sci 155:629–638Google Scholar
  71. 71.
    Koel BE, Crowell JE, Mate CM, Somorjai GA (1984) J Phys Chem 88:1988–1996Google Scholar
  72. 72.
    Mate CM, Somorjai GA (1985) Surf Sci 160:542–560Google Scholar
  73. 73.
    Zou SZ, Williams CT, Chen EKY, Weaver MJ (1998) J Am Chem Soc 120:3811–3812Google Scholar
  74. 74.
    Zou SZ, Williams CT, Chen EKY, Weaver MJ (1998) J Phys Chem B 102:9039–9049Google Scholar
  75. 75.
    Liu GK, Yao JL, Ren B, Gu RA, Tian ZQ (2002) Electrochem Commun 4:392–396Google Scholar
  76. 76.
    Liu GK, Ren B, Gu RA, Tian ZQ (2002) Chem Phys Lett 364:593–598Google Scholar
  77. 77.
    Liu GK, Ren B, Wu DY, Duan S, Li JF, Yao JL, Gu RA, Tian ZQ (2006) J Phys Chem B 110:17498–17506Google Scholar
  78. 78.
    Bernhard S (1989) Raman/Infrared atlas of organic compounds. VCH, WeinheimGoogle Scholar
  79. 79.
    Morin C, Simon D, Sautet P (2004) J Phys Chem B 108:5653–5665Google Scholar
  80. 80.
    Varsanyi G (1974) Assignments for Vibrational spectra of seven hundred benzene derivatives. Wiley, New YorkGoogle Scholar
  81. 81.
    Liu GK, Ren B, Gu RA, Tian ZQ (2007) J Phys Chem C 111 (in press)Google Scholar
  82. 82.
    Brewer L (1969) Science 161:115–122Google Scholar
  83. 83.
    Gersten J, Nitzan A (1980) J Chem Phys 73:3023–3037Google Scholar
  84. 84.
    Adrian FJ (1981) Chem Phys Lett 78:45–49Google Scholar
  85. 85.
    Metiu H (1984) Prog Surf Sci 17:153–320Google Scholar
  86. 86.
    Schatz GC, Young MA, Van Duyne RP (2006) Top Appl Phys 103:19–46Google Scholar
  87. 87.
    Weaver JH (1975) Phys Rev B 11:1416–1425Google Scholar
  88. 88.
    Ordal MA, Bell RJ, Alexander RW Jr, Long LL, Querry MR (1985) Appl Opt 24:4493–4499CrossRefGoogle Scholar
  89. 89.
    Tian ZQ, Yang ZL, Ren B, Wu DY (2006) Top Appl Phys 103:125–147Google Scholar
  90. 90.
    Tian ZQ (2006) Faraday Discuss 132:156–157Google Scholar
  91. 91.
    Wu DY, Duan S, Ren B, Tian ZQ (2005) J Raman Spectrosc 36:533–540Google Scholar
  92. 92.
    Xie Y, Wu DY, Liu GK, Huang ZF, Ren B, Yan JW, Yang ZL, Tian ZQ (2003) J Electroanal Chem 554:417–425Google Scholar
  93. 93.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471–1482Google Scholar
  94. 94.
    Kim CW, Villagran JC, Even U, Thompson JC (1991) J Chem Phys 94:3974–3977Google Scholar
  95. 95.
    Persson BNJ (1993) Surf Sci 281:153–162Google Scholar
  96. 96.
    Otto A (1984) In: Cardona M, Guntherodt G (eds) Light scattering in solid. Springer, Berlin, vol 4, pp 289–418Google Scholar
  97. 97.
    Pettinger B (1986) J Chem Phys 85:7442–7451Google Scholar
  98. 98.
    Corni S, Tomasi J (2001) Chem Phys Lett 342:135–140Google Scholar
  99. 99.
    Corni S, Tomasi J (2001) J Chem Phys 114:3739–3751Google Scholar
  100. 100.
    Corni S, Tomasi J (2002) J Chem Phys 116:1156–1164Google Scholar
  101. 101.
    Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:075419.1–075419.9Google Scholar
  102. 102.
    Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Appl Phys Lett 78:802–804Google Scholar
  103. 103.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanah KL (2004) Nano Lett 4:2015–2018Google Scholar
  104. 104.
    Kolb DM, Ullmann R, Will T (1997) Science 275:1097–1099Google Scholar
  105. 105.
    Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) Science 283:661–663Google Scholar
  106. 106.
    Zhang X, Whitney AV, Zhao J, Hicks EM, Van Duyne RP (2006) J Nanosci Nanotech 6:1920–1934Google Scholar
  107. 107.
    Abdelsalam ME, Bartlett PN, Baumberg JJ, Cintra S, Kelf TA, Russellet AE (2005) Electrochem Comm 7:740–744Google Scholar
  108. 108.
    Yao JL, Pan GP, Xue KH, Wu DY, Ren B, Sun DM, Tang J, Xu X, Tian ZQ (2000) Pure Appl Chem 72:221–226Google Scholar
  109. 109.
    Perry SS, Hatch SR, Campion A (1996) J Chem Phys 104:6856–6859Google Scholar
  110. 110.
    Sakamoto K, Hashizume H, Nagafusa M, Sato H, Ushioda S (1996) Surf Sci 368:292–295Google Scholar
  111. 111.
    Bruckbauer A, Otto A (1998) J Raman Spectrosc 29:665–672Google Scholar
  112. 112.
    Sun YG, Xia YN (2002) Science 298:2176–2179Google Scholar
  113. 113.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1926Google Scholar
  114. 114.
    Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648–8649Google Scholar
  115. 115.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101Google Scholar
  116. 116.
    Ren B, Picardi G, Pettinger B, Schuster R, Ertl G (2005) Angew Chem Int Ed 44:139–142Google Scholar
  117. 117.
    Jiang YX, Li JF, Wu DY, Ren B, Yang ZL, Hu JW, Chow YL, Tian ZQ (2007) (submitted)Google Scholar
  118. 118.
    Verma P, Inouye Y, Kawata S (2006) Top Appl Phys 103:241–262Google Scholar
  119. 119.
    Pettinger B (2006) Top Appl Phys 103:217–242CrossRefGoogle Scholar
  120. 120.
    Bouhelier A (2006) Microsc Res Tech 69:563–579Google Scholar
  121. 121.
    Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chemphyschem 7:1428–1430Google Scholar
  122. 122.
    Anderson N, Hartschuh A, Cronin S, Novotny L (2005) J Am Chem Soc 127:2533–2537Google Scholar
  123. 123.
    Ren B, Cui L, Lin XF, Tian ZQ (2003) Chem Phys Lett 376:130–135Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bin Ren
    • 1
  • Guo-Kun Liu
    • 1
    • 3
  • Xiao-Bing Lian
    • 1
  • Zhi-Lin Yang
    • 2
  • Zhong-Qun Tian
    • 1
  1. 1.State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of ChemistryCollege of Chemistry and Chemical Engineering, Xiamen UniversityXiamenChina
  2. 2.Department of PhysicsXiamen UniversityXiamenChina
  3. 3.State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina

Personalised recommendations