Analytical and Bioanalytical Chemistry

, Volume 387, Issue 7, pp 2569–2583 | Cite as

New strategies to screen for endocrine-disrupting chemicals in the Portuguese marine environment utilizing large volume injection–capillary gas chromatography–mass spectrometry combined with retention time locking libraries (LVI–GC–MS–RTL)

  • C. Almeida
  • P. Serôdio
  • M. H. Florêncio
  • J. M. F. Nogueira
Original Paper

Abstract

A new analytical strategy to screen for endocrine-disrupting chemicals (EDCs) in environmental matrices is presented. The strategy uses solid-phase extraction followed by large volume injection and capillary gas chromatography coupled to mass spectrometry combined with retention time locking libraries (SPE–LVI–GC–MS–RTL). Characterization of the proposed methodology (SPE–LVI–GC–MS) for selected classes of EDCs enabled high reproducibility and robustness at the ultratrace level. The RTL databases used allowed hundreds of non-target semivolatiles (i.e., pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls and other classes of suspected EDCs from a great number of unknown environmental matrices) to be simultaneously screened for in an easy, fast and remarkable manner. The application of the proposed methodology to real environmental samples demonstrated its remarkable selectivity and sensitivity at the ultratrace level. Screening assessments performed on water and sediment matrices from eight Portuguese estuaries and coastal waters identified EDC “hotspots.” These EDCs mainly come from agricultural and a wide variety of industrial sources, and include pesticides and pesticide metabolites, phenolic derivatives and polycyclic aromatic hydrocarbons, which are included in the lists of priority substances published by international environmental agencies. The estuaries that contained relatively high levels of pesticides were Guadiana, Sado and Mondego, while Minho, Douro and Formosa showed enhanced levels of phenolic derivatives. Dibutyltin and tributyltin, selected as target compounds to be monitored by SPE–LVI–GC–MS in the selected ion monitoring mode, were shown to be widespread contaminants at trace levels in almost all of the sediment matrices assessed. The reliability of the proposed methodology undoubtedly makes it a valuable tool that could replace other analytical strategies currently used to screen for EDCs present in the environment at ultratrace levels.

Keywords

SPE–LVI–GC–MS RTL databases Endocrine-disrupting chemicals Pesticides and metabolites Phenolic derivatives PAHs Organotins Environmental matrices Portuguese estuaries 

Notes

Acknowledgments

This research was supported by the Fundação para a Ciência e a Tecnologia (PDCTM/C/MAR/15283/1999). We thank Henrique Cabral and his group from Oceanography Institute (FCUL) for sampling in the Douro and Tagus estuaries; José C. Antunes and his group from Marine Investigation Institute (CIIMAR) for sampling in the Minho estuary; Miguel A. Pardal from University of Coimbra (FCTUC) for sampling in the Mondego estuary; Carla Lopes from University of Aveiro for sampling in the Aveiro estuary and Constança Bexiga, Alice Newton and Adelino Canário from the University of Algarve for sampling in the Sado, Guadiana and Formosa estuaries.

References

  1. 1.
    Guillette LJ, Crain DA (2000) Environmental endocrine disrupters: an evolutionary perspective. Taylor & Francis, New YorkGoogle Scholar
  2. 2.
    Litchfield M, Peakall D (1995) Environmental oestrogens: consequences to human health and wildlife. Institute for Environment and Health, University of Leicester, Leicester, UKGoogle Scholar
  3. 3.
    Jimènez B (1997) Trends Anal Chem 16:596CrossRefGoogle Scholar
  4. 4.
    Baker VA (2001) Toxicol In Vitro 15:413CrossRefGoogle Scholar
  5. 5.
    Tanabe S (2002) Mar Pollut Bull 45:69CrossRefGoogle Scholar
  6. 6.
    US EPA (1998) Research plan for endocrine disruptors. US Environmental Protection Agency, Washington DCGoogle Scholar
  7. 7.
    EC (2001) Implementation of the Community Strategy for Endocrine Disrupters (COM 262). European Community, BrusselsGoogle Scholar
  8. 8.
    Birkett JW, Lester JN (2002) Endocrine disrupters in wastewater and sludge treatment processes. Lewis, Boca Raton, FLGoogle Scholar
  9. 9.
    Oosterkamp AJ, Seifert BHM, Irth H (1997) Trends Anal Chem 16:544CrossRefGoogle Scholar
  10. 10.
    Castillo M, Barceló D (1997) Trends Anal Chem 16:574CrossRefGoogle Scholar
  11. 11.
    Rudel RA, Melly SJ, Geno PW, Sun G, Brody JG (1998) Environ Sci Technol 32:861CrossRefGoogle Scholar
  12. 12.
    Barceló D (2000) Sample handling and trace analysis of pollutants—techniques, applications and quality assurance, vol. 21. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Stehmann A, Meesters RJW, Schroder HF (2004) Water Sci Technol 50:165Google Scholar
  14. 14.
    Jeannot R, Sabik H, Sauvard E, Dagnac T, Dohrendorf K (2002) J Chromatogr A 974:143CrossRefGoogle Scholar
  15. 15.
    Petrovic M, Eljarrat E, de Alda MJL, Barceló D (2004) Anal Bioanal Chem 378:549CrossRefGoogle Scholar
  16. 16.
    Santos FJ, Galceran MT (2003) J Chromatogr A 1000:125CrossRefGoogle Scholar
  17. 17.
    Blumberg LM, Klee MS (1998) Anal Chem 70:3828CrossRefGoogle Scholar
  18. 18.
    Cook J, Engel M, Wylie P, Quimby B (1999) J AOAC Int 82:313Google Scholar
  19. 19.
    Sandra P, Tienpont B, David F (2003) J Chromatogr A 1000:299CrossRefGoogle Scholar
  20. 20.
    Wylie P, Quimby B (1998) Application note 228–402. Hewlett Packard, Palo Alto, CAGoogle Scholar
  21. 21.
    Meng CK (2001) Application note 5988–4392EN. Hewlett Packard, Palo Alto, CAGoogle Scholar
  22. 22.
    Lamberty A, Quevauviller P, Morabito R (1998) The recertification of the contents (mass fractions) of tributyltin and dibutyltin in coastal sediment (CRM 462, no. 330). European Commission, BrusselsGoogle Scholar
  23. 23.
    Quevauviller P (1995) Quality assurance in environmental monitoring: sampling and sample pretreatment. VCH, Weinheim, GermanyGoogle Scholar
  24. 24.
    Nogueira JMF, Teixeira P, Florêncio MH (2001) J Microcolumn Sep 13:48CrossRefGoogle Scholar
  25. 25.
    Azevedo D, Lacorte S, Vinhas T, Viana P, Barceló D (2000) J Chromatogr A 879:13CrossRefGoogle Scholar
  26. 26.
    Azevedo D, Lacorte S, Viana P, Barceló D (2001) J Brazil Chem Soc 12:532Google Scholar
  27. 27.
    Tauler R, Azevedo DD, Lacorte S, Cespedes R, Viana P, Barcelo D (2001) Environ Technol 22:1043CrossRefGoogle Scholar
  28. 28.
    Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valério MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Water Res 37:1055CrossRefGoogle Scholar
  29. 29.
    Petrovic M, Eljarrat E, de Alda MJL, Barceló D (2002) J Chromatogr A 974:23CrossRefGoogle Scholar
  30. 30.
    Serra H, Nogueira JMF (2005) J Chromatogr A 1094:130CrossRefGoogle Scholar
  31. 31.
    Phelps HL, Page DS (1997) Environ Technol 18:1269Google Scholar
  32. 32.
    Bettencourt AMM, Andreae MO, Cai Y, Gomes ML, Schebek L, Vilas Boas LF, Rapsomanikis S (1999) Aquat Ecol 33:271CrossRefGoogle Scholar
  33. 33.
    Pessoa MF, Fernando A, Oliveira JS (2001) Environ Toxicol 16:234CrossRefGoogle Scholar
  34. 34.
    Nogueira JMF, Simplício B, Florêncio MH, Bettencourt AMM (2003) Estuaries 26:798CrossRefGoogle Scholar
  35. 35.
    Diez S, Lacorte S, Viana P, Barceló D, Bayona JM (2005) Environ Pollut 136:525CrossRefGoogle Scholar
  36. 36.
    Pardal MA, Marques JC, Graça MA (2002) Aquatic ecology of the Mondego river basin—global importance of local experience. Imprensa da Universidade de Coimbra, PortugalGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C. Almeida
    • 1
  • P. Serôdio
    • 1
  • M. H. Florêncio
    • 1
    • 2
  • J. M. F. Nogueira
    • 1
    • 3
  1. 1.Chemistry and Biochemistry DepartmentUniversity of LisbonLisbonPortugal
  2. 2.Center of Chemistry and BiochemistryUniversity of LisbonLisbonPortugal
  3. 3.Center for Molecular Sciences and MaterialsUniversity of LisbonLisbonPortugal

Personalised recommendations