Advertisement

Analytical and Bioanalytical Chemistry

, Volume 387, Issue 6, pp 2163–2174 | Cite as

Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction

  • Maik A. Jochmann
  • Xue Yuan
  • Torsten C. SchmidtEmail author
Original Paper

Abstract

In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography–mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-μm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons.

Figure

SPDE Principle

Keywords

Solid-phase dynamic extraction Volatile organic compound Groundwater analysis Gas chromatography–mass spectrometry Setschenow constants 

Notes

Acknowledgements

We thank Stefan B. Haderlein and Michaela Blessing for helpful comments on the manuscript, and Thomas Wendel for support in the laboratory. Special thanks go to Satoshi Endo for detailed discussions. Technical support by Chromtech (Idstein, Germany) and financial support by the University of Tuebingen are gratefully acknowledged.

References

  1. 1.
    National Research Council (1994) Alternatives for groundwater cleanup. National Academy Press, WashingtonGoogle Scholar
  2. 2.
    Pankow A, Cherry JA (1996) Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo, WaterlooGoogle Scholar
  3. 3.
    Poli D, Manini P, Andreoli R, Franchini I, Mutti A (2005) J Chromatogr B 820:95–102CrossRefGoogle Scholar
  4. 4.
    Hunkeler D, Aravena R, Berry-Spark K, Cox E (2005) Environ Sci Technol 39:5975–5981CrossRefGoogle Scholar
  5. 5.
    Sherwood Lollar BS, Slater GF, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P (1999) Org Geochem 30:813–820CrossRefGoogle Scholar
  6. 6.
    Zoccolillo L, Amendola L, Cafaro C, Insogna S (2005) J Chromatogr A 1077:181–187CrossRefGoogle Scholar
  7. 7.
    Kolb B, Ettre LS (1997) Static headspace-gas chromatography theory and practice, 1 edn. Wiley, New YorkGoogle Scholar
  8. 8.
    Chen M, Mao I, Hsu C (1997) Toxicol Environ Chem 60:39–45CrossRefGoogle Scholar
  9. 9.
    Dewulf J, Van Langenhove H, Evaraert M (1997) J Chromatogr A 761:205–217CrossRefGoogle Scholar
  10. 10.
    Gorecki T, Pawliszyn J (1997) Field Anal Chem Technol 1:277–284CrossRefGoogle Scholar
  11. 11.
    Nilsson T, Ferrari R, Facchetti S (1997) Anal Chim Acta 356:113–123CrossRefGoogle Scholar
  12. 12.
    Nilsson T, Montanarella D, Bablio D, Tilio R, Bidoglio G, Fracchetti S (1998) Int J Environ Anal Chem 69:217–226Google Scholar
  13. 13.
    Popp P, Paschke A (1997) Chromatographia 46:419–424CrossRefGoogle Scholar
  14. 14.
    Sun TH, Jia JP, Fang NH, Wang YL (2005) Anal Chim Acta 530:33–40CrossRefGoogle Scholar
  15. 15.
    Buszewski B, Ligor T (2001) Water Air Soil Pollut 129:155–165CrossRefGoogle Scholar
  16. 16.
    Dewulf J, Van Langenhove H, Huybrechts T (2006) Trends Anal Chem 25:300–309CrossRefGoogle Scholar
  17. 17.
    Golfinopoulos SK, Lekkas TD, Nikolaou AD (2001) Chemosphere 45:275–284CrossRefGoogle Scholar
  18. 18.
    US EPA (1992) Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry; method 524.4, revision 4.0. US Environmental Protection Agency, CincinnatiGoogle Scholar
  19. 19.
    Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Anal Chem 75:5575–5583CrossRefGoogle Scholar
  20. 20.
    O’Reilly J, Wang O, Setkova L, Hutchinson JP, Chen Y, Lord HL, Linton CM, Pawliszyn J (2005) J Sep Sci 28:2010–2022CrossRefGoogle Scholar
  21. 21.
    Bigham S, Medlar J, Kabir A, Shende C, Alli A, Malik A (2002) Anal Chem 74:752–761CrossRefGoogle Scholar
  22. 22.
    Shojania S, Oleschuk RD, McComb ME, Gesser HD, Chow A (1999) Talanta 50:193–205CrossRefGoogle Scholar
  23. 23.
    Mol HGJ, Janssen HGM, Cramers CA, Vreuls JJ, Brinkman UAT (1995) J Chromatogr A 703:277–307CrossRefGoogle Scholar
  24. 24.
    Tan BCD, Marriott PJ, Lee HK, Morrison PD (2000) Analyst 125:469–475CrossRefGoogle Scholar
  25. 25.
    Kubinec R, Berezkin V, Gorova R, Addova G, Mracnova H, Sojak L (2004) J Chromatogr B 800:295–301CrossRefGoogle Scholar
  26. 26.
    Wang J-X, Jiang D-Q, Yan X-P (2005) Anal Chim Acta 545:232–238CrossRefGoogle Scholar
  27. 27.
    Jochmann MA, Kmiecik MP, Schmidt TC (2006) J Chromatogr A 1115:208–216CrossRefGoogle Scholar
  28. 28.
    Musshoff F, Lachenmeier DW, Kroener L, Madea B (2002) J Chromatogr A 958:231–238CrossRefGoogle Scholar
  29. 29.
    Lipinski J (2001) Fresenius J Anal Chem 369:57–62CrossRefGoogle Scholar
  30. 30.
    Ridgway K, Lalljie SPD, Smith RM (2006) J Chromatogr A 1024:1186–1881Google Scholar
  31. 31.
    Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B (2004) J Chromatogr A 1024:217–226CrossRefGoogle Scholar
  32. 32.
    Nilsson T, Ogaard-Madison J, Montanrilla L, Larsen B, Facchetti S, Pelusioj F (1995) High Resolut Chromatogr 18:617–624CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Pawliszyn J (1993) Anal Chem 65:1843–1852CrossRefGoogle Scholar
  34. 34.
    Chai M, Pawliszyn J (1995) Environ Sci Technol 29:693–701CrossRefGoogle Scholar
  35. 35.
    Chai M, Arthur L, Pratt KF, Belardi RP (1993) Analyst 118:1501–1505CrossRefGoogle Scholar
  36. 36.
    Grote C, Belau E, Levsen K, Wünsch G (1999) Acta Hydrochim Hydrobiol 27:193–199CrossRefGoogle Scholar
  37. 37.
    Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  38. 38.
    Wypych J, Manko T (2002) Chem Anal 47:507–530Google Scholar
  39. 39.
    Gossett JM (1987) Environ Sci Technol 21:202–208CrossRefGoogle Scholar
  40. 40.
    Guitart C, Bayona J, Readman J (2004) Chemosphere 57:429–437CrossRefGoogle Scholar
  41. 41.
    Wang A, Fang F, Pawliszyn J (2005) J Chromatogr A 1072:127–135CrossRefGoogle Scholar
  42. 42.
    Glaser JA, Foerst DL, Mckee GD, Quave SA, Budde WL (1981) Environ Sci Technol 15:1427–1435CrossRefGoogle Scholar
  43. 43.
    Lee J-H, Hwang SM, Lee DW, Hoe GS (2002) Bull Korean Chem Soc 23:488–496CrossRefGoogle Scholar
  44. 44.
    Zhang Z, Pawliszyn J (1996) J High Resolut Chromatogr 19:155–160CrossRefGoogle Scholar
  45. 45.
    Staudinger J, Roberts PV (2001) Chemosphere 44:561–576CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Maik A. Jochmann
    • 1
    • 2
  • Xue Yuan
    • 1
  • Torsten C. Schmidt
    • 1
    • 2
    Email author
  1. 1.Center for Applied Geoscience (ZAG)Eberhard-Karls-Universität TübingenTübingenGermany
  2. 2.University Duisburg-EssenChair of Instrumental AnalysisDuisburgGermany

Personalised recommendations