Analytical and Bioanalytical Chemistry

, Volume 387, Issue 6, pp 2207–2217 | Cite as

Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography

Original Paper

Abstract

Different extraction methods for the subsequent gas chromatographic determination of the composition of essential oils and related compounds from marjoram (Origanum majorana L.), caraway (Carum carvi L.), sage (Salvia officinalis L.), and thyme (Thymus vulgaris L.) have been compared. The comparison was also discussed with regard to transformation processes of genuine compounds, particularly in terms of expenditure of time. Hydrodistillation is the method of choice for the determination of the essential oil content of plants. For investigating the composition of genuine essential oils and related, aroma-active compounds, hydrodistillation is not very useful, because of discrimination and transformation processes due to high temperatures and acidic conditions. With cold solvent extraction, accelerated solvent extraction, and supercritical fluid extraction, discrimination of high and non-volatile aroma-active components as well as transformation processes can be diminished, but non-aroma-active fats, waxes, or pigments are often extracted, too. As solid-phase microextraction is a solvent-free fully automizable sample preparation technique, this was the most sparing to sensitive components and the most time-saving method for the rapid determination of the aroma compounds composition in marjoram, caraway, sage, and thyme. Finally, solid-phase microextraction could be successfully optimized for the extraction of the aroma components from the plants for their subsequent gas chromatographic determination.

Keywords

Extraction SPME GC Origanum majorana L. Thymus vulgaris L. Salvia officinalis L. Carum carvi L. 

Abbreviations

GC

gas chromatography

MS

mass spectrometry

ASE

accelerated solvent extraction

SFE

supercritical fluid extraction

SPME

solid-phase microextraction

Notes

Acknowledgement

The investigations have been performed within the research project FKZ 03i0618B. The authors thank the German Federal Ministry of Education and Research for financial support.

References

  1. 1.
    Blum C (1999) Analytik und Sensorik von Gewürzextrakten und Gewürzölen. Dissertation, Institute for Pharmacy, University of Hamburg, GermanyGoogle Scholar
  2. 2.
    De Castro MDL, Jimenez-Carmona MM, Fernandez-Perez V (1999) Trends Anal Chem 18:708–716CrossRefGoogle Scholar
  3. 3.
    Fischer N, Nitz S, Drawert F (1987) Flavour Fragr J 2:55–61CrossRefGoogle Scholar
  4. 4.
    Fischer N, Nitz S, Drawert F (1988) J Agric Food Chem 36:996–1003CrossRefGoogle Scholar
  5. 5.
    Jiménez-Carmona MM, Ubera JL, Luque de Castro MD (1999) J Chr A 855:625–632CrossRefGoogle Scholar
  6. 6.
    Cornwell CP, Leach DN, Wyllie SG (1999) J Essent Oil Res 11:49–53Google Scholar
  7. 7.
    Tietz U, Thomann R, Förstner S (1991) Die Nahrung 35:1013–1021CrossRefGoogle Scholar
  8. 8.
    Nitz S, Kollmannsberger H, Punkert M (1992) Chem Mikrobiol Technol Lebensm 14:108–116Google Scholar
  9. 9.
    Oszagyan M, Simandi B, Sawinsky J (1996) Flavour Fragr J 11:157–165CrossRefGoogle Scholar
  10. 10.
    Maldao-Martins M, Palavra A, da Costa B, Bernardo-Gil MG (2000) J Supercrit Fluids 18:25–34CrossRefGoogle Scholar
  11. 11.
    Maldao-Martins M, Bernardo-Gil MG, da Costa B (2002) Eur Food Res Technol 214:207–211CrossRefGoogle Scholar
  12. 12.
    Länger R, Mechtler C, Jurenitsch J (1996) Phytochem Anal 7:289–293CrossRefGoogle Scholar
  13. 13.
    Ronyai E, Simandi B, Veress T, Lemberkovics E, Patiaka D (1999) J Essent Oil Res 11:499–502Google Scholar
  14. 14.
    Rodrigues MRA, Caramao EB, dos Santos JG, Dariva C, Oliviera JV (2003) J Agric Food Chem 51:453–456CrossRefGoogle Scholar
  15. 15.
    Stahl E, Quirin KW, Glatz A, Gerard D, Rau G (1984) Ber Bunsenges Phys Chem 88:900–907Google Scholar
  16. 16.
    Sovova H, Komers R, Kucera J, Jez J (1994) Chem Eng Sci 49:2499–2505CrossRefGoogle Scholar
  17. 17.
    Baysal T, Starmans DAJ (1999) J Supercrit Fluids 14:225–234CrossRefGoogle Scholar
  18. 18.
    Vas G, Vékey K (2004) J Mass Spectrom 39:233–254CrossRefGoogle Scholar
  19. 19.
    O’Reilly J, Wang Q, Setkova L, Hutchinson JP, Chen Y, Lord HL, Linton CM, Pawliszyn J (2005) J Sep Sci 28:2010–2022CrossRefGoogle Scholar
  20. 20.
    Bicchi C, Drigo S, Rubiolo P (2000) J Chr A 892:469–485CrossRefGoogle Scholar
  21. 21.
    Rohloff J (1999) J Agric Food Chem 47:3782–3786CrossRefGoogle Scholar
  22. 22.
    Rohloff J, Skagen EB, Steen AH, Iversen T-H (2000) J Agric Food Chem 48:6205–6209CrossRefGoogle Scholar
  23. 23.
    Coleman WM, Lawrence BM (2000) J Chr Sci 38:95–99Google Scholar
  24. 24.
    Namiesnik J, Górecki T (2000) J Planar Chrom 13:404–413Google Scholar
  25. 25.
    Jorgensen EE (2000) Am Midl Nat 145:419–422CrossRefGoogle Scholar
  26. 26.
    Schäfer B, Hennig P, Engewald W (1995) J High Resol Chromatogr 18:587–592CrossRefGoogle Scholar
  27. 27.
    Ligor M, Szumski M, Buszewski B (2000) Int Lab 1:22–25Google Scholar
  28. 28.
    Cornu A, Carnat A-P, Martin B, Coulon J-B, Lamaison J-L, Berdagué J-L (2001) J Agric Food Chem 49:203–209CrossRefGoogle Scholar
  29. 29.
    Czerwinsky J, Zygmunt B, Namiesnik J (1996) Fresenius J Anal Chem 356:80–83CrossRefGoogle Scholar
  30. 30.
    Mindrup RF (2000) Food Test Anal 2:17–19Google Scholar
  31. 31.
    Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured, Illinois, USAGoogle Scholar
  32. 32.
    Komaitis ME (1992) Food Chem 45:117–118CrossRefGoogle Scholar
  33. 33.
    Vera RR, Chane-Ming J (1999) Food Chem 66:143–145CrossRefGoogle Scholar
  34. 34.
    Barazandeh MM (2001) J Essent Oil Res 13:76–77Google Scholar
  35. 35.
    Tarjan G, Bitter I, Strasser B, Szatmary M (2002) Chromatographia Supplement 56:155–163CrossRefGoogle Scholar
  36. 36.
    Hudaib M, Speroni E, Di Petra AM, Cavrini V (2002) J Pharm Biomed Anal 29:691–700CrossRefGoogle Scholar
  37. 37.
    Pereira SI, Santos PAG, Barroso JG, Figueiredo AC, Pedro LG, Salgueiro LR, Deans SG, Scheffer JJC (2000) Phytochemistry 55:241–246CrossRefGoogle Scholar
  38. 38.
    Kubeczka K-H, Formácek V (2002) Essential oils analysis by capillary gas chromatography and carbon-13 NMR spectroscopy, 2nd edn. Wiley, Chichester, EnglandGoogle Scholar
  39. 39.
    Bailer J, Aichinger T, Hackl G, de Hueber K, Dachler M (2001) Ind Crops Prod 14:229–239CrossRefGoogle Scholar
  40. 40.
    Sedlakova J, Kocourkova B, Kuban V (2001) Czech J Food Sci 19:31–36Google Scholar
  41. 41.
    Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heaney AJ, McGimpsey JA, Smallfield BM (1999) J Agric Food Chem 47:2048–2054CrossRefGoogle Scholar
  42. 42.
    Sagareishvili TG, Grigalova BL, Gelashvili NE, Kemertelidze EP (2000) Chem Nat Compd 36:360–361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Bioanalytical Sciences (IBAS)Center of Life Sciences, Anhalt University of Applied SciencesBernburgGermany

Personalised recommendations