Analytical and Bioanalytical Chemistry

, Volume 387, Issue 6, pp 2245–2253 | Cite as

Determination of triazine herbicides: development of an electroanalytical method utilizing a solid amalgam electrode that minimizes toxic waste residues, and a comparative study between voltammetric and chromatographic techniques

  • Djenaine De SouzaEmail author
  • Renata A. de Toledo
  • Andressa Galli
  • Giancarlo R. Salazar-Banda
  • Maria R. C. Silva
  • Gustavo S. Garbellini
  • Luiz H. Mazo
  • Luis A. Avaca
  • Sergio A. S. Machado
Original Paper


The use of a copper solid amalgam electrode (CuSAE) for the analytical determination of triazine herbicides (atrazine and ametryne) instead of the conventional hanging mercury drop electrode (HMDE) is reported. The results obtained using electroanalytical methods utilizing each of these electrodes were also compared with those provided by the HPLC technique. The results indicated that the CuSAE electrode can be used to detect the herbicides studied, since the detection limits reached using the electrode (3.06 μg L−1 and 3.78 μg L−1 for atrazine and ametryne, respectively) are lower than the maximum values permitted by CONAMA (Brazilian National Council for the Environment) for wastewaters (50 μg L−1) and by the US EPA (Environmental Protection Agency of the United States) in natural water samples (10.00 μg L−1). An electroanalytical methodology employing CuSAE and square wave voltammetry (SWV) was successfully applied to the determination of atrazine and ametryne in natural water samples, yielding good recoveries (70.30%–79.40%). This indicates that the CuSAE provides a convenient substitute for the HMDE, particularly since the CuSAE minimizes the toxic waste residues produced by the use of mercury in HDME-based analyses.


Copper solid amalgam electrode Atrazine Ametryne Mercury electrodes 



The authors wish to thank the CNPq, CAPES and FAPESP (process 03/12926-3, 05/00294-8 and 06/50692-2) for their financial support.


  1. 1.
    Pang L, Close ME (2001) Pest Manag Sci 57:1142–1150CrossRefGoogle Scholar
  2. 2.
    Carabias-Martínez R, Rodríguez-Gonzalo E, Herrero-Hernández E (2006) Anal Chim Acta 559:186–194CrossRefGoogle Scholar
  3. 3.
    dos Santos LBO, Abate G, Masini JC (2004) Talanta 62:667–674CrossRefGoogle Scholar
  4. 4.
    Vaz CMP, Crestana S, Machado SAS (1996) Int J Environ Anal Chem 62:65–76Google Scholar
  5. 5.
    Espinoza J, Baez ME (2003) J Chil Chem Soc 48:1–8CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Mozaz S, Alda MJL, Barceló D (2006) Talanta 69:377–384CrossRefGoogle Scholar
  7. 7.
    Zhou Q, Xiao J, Wang W, Liu G, Shi Q, Wang J (2006) Talanta 68:1309–1315CrossRefGoogle Scholar
  8. 8.
    Falqui-Cao C, Urruty LU, Pommier JJ, Mantury M (2002) J Agric Food Chem 5:5092–5097Google Scholar
  9. 9.
    Tadeo JL, Sanchez-Brunete C, Perez RA, Fernandez MD (2005) J Chromatogr A 882:175–191CrossRefGoogle Scholar
  10. 10.
    Gonçalves C, Carvalho JJ, Azenha MA, Alpendurada MF (2006) J Chromatogr A 1110:6–14CrossRefGoogle Scholar
  11. 11.
    Mazzei F, Botré F, Montilla S, Pilloton R, Podestà E, Botré C (2004) J Electroanal Chem 574:95–100CrossRefGoogle Scholar
  12. 12.
    Xu Z, Chen X, Qu X, Jia J, Dong S (2004) Biosens Bioelectron 20:579–584CrossRefGoogle Scholar
  13. 13.
    Stára V, Kopanica M (1989) Electroanalysis 1:251–257CrossRefGoogle Scholar
  14. 14.
    Ahamad R, Barek J, Yusoff AR, Sinaga SM, Zima J (2000) Electroanalysis 12:1220–1226CrossRefGoogle Scholar
  15. 15.
    Codognoto L, Zuin VG, De Souza D, Yariwake JH, Machado SAS, Avaca LA (2004) Microchem J 77:177–184CrossRefGoogle Scholar
  16. 16.
    Manisankar F, Viswanathan S, Mercy Pusphalatha A, Rani C (2005) Anal Chim Acta 528:157–163CrossRefGoogle Scholar
  17. 17.
    De Souza D, Machado SAS (2005) Anal Chim Acta 546:85–91CrossRefGoogle Scholar
  18. 18.
    De Souza D, Machado SAS (2005) Anal Bioanal Chem 382:1720–1725CrossRefGoogle Scholar
  19. 19.
    De Souza D, Codognoto L, Machado SAS, Avaca LA (2005) Anal Lett 38:331–341Google Scholar
  20. 20.
    Anh TM, Dzyadevych SV, Van MC, Renault NJ, Duc CN, Chovelon JM (2004) Talanta 63:365–370CrossRefGoogle Scholar
  21. 21.
    Grennan K, Strachan G, Porter AJ, Killard AJ, Smyth MR (2003) Anal Chim Acta 500:287–298CrossRefGoogle Scholar
  22. 22.
    Pribyl J, Hepel M, Halámek J, Skládal P (2003) Sens Actuators B 91:333–340CrossRefGoogle Scholar
  23. 23.
    Hleli S, Martelet C, Abdelghani A, Burais N, Jaffrezic-Renault N (2006) Sens Actuators B 113:711–717CrossRefGoogle Scholar
  24. 24.
    Ciumasu IM, Krämer PM, Weber CM, Kolb G, Tiemann D, Windisch S, Frese I, Kettrup AA (2005) Biosens Bioelectron 21:354–364CrossRefGoogle Scholar
  25. 25.
    Yosypchuk B, Novotný L (2002) Talanta 56:971–976CrossRefGoogle Scholar
  26. 26.
    Yosypchuk B, Novotný L (2002) Crit Rev Anal Chem 32:141–151CrossRefGoogle Scholar
  27. 27.
    Yosypchuk B, Novotný L (2003) Electroanalysis 15:121–125CrossRefGoogle Scholar
  28. 28.
    De Souza D, de Toledo RA, Mazo LH, Machado SAS (2005) Electroanalysis 17:2090–2094CrossRefGoogle Scholar
  29. 29.
    Lovrić M, Komorsky-Lovrić S (1988) J Electroanal Chem 248:239–245CrossRefGoogle Scholar
  30. 30.
    De Souza D, Codognoto L, Malagutti AR, Toledo RA, Pedrosa VA, Oliveira RTS, Mazo LH, Avaca LA, Machado SAS (2004) Quim Nova 27:790–797Google Scholar
  31. 31.
    Yosypchuk B, Novotný L (2000) Chem Listy 94:1118–1120Google Scholar
  32. 32.
    De Souza D, de Toledo RA, Suffredini HB, Mazo LH, Machado SAS (2006) Electroanalysis 18:605–612CrossRefGoogle Scholar
  33. 33.
    Mocak J, Bond AM, Mitchel S, Scollary G (1997) Pure Appl Chem 69:297–328Google Scholar
  34. 34.
    Analytical Methods Committee (1987) Analyst 112:199–204CrossRefGoogle Scholar
  35. 35.
    Melo LFC, Collins CH, Jardim ICSF (2005) J Chromatogr A 1073:75–81CrossRefGoogle Scholar
  36. 36.
    Pospisil L, Trsková R, Fuoco R, Colombini MP (1995) J Electroanal Chem 395:189–193CrossRefGoogle Scholar
  37. 37.
    Lovric M, Branica M (1987) J Electroanal Chem 226:239–251CrossRefGoogle Scholar
  38. 38.
    O’dea JJ, Osteryoung J, Osteryoung R (1981) Anal Chem 53:695–701Google Scholar
  39. 39.
    CONAMA (2006) Conselho Nacional do Meio Ambiente (CONAMA, the Environmental National Council in Brazil) (see, last accessed 18th December 2006)
  40. 40.
    US EPA (1997) National profile on management of chemicals. United States Environmental Protection Agency (US EPA), Washington, DC (see, last accessed 18th December 2006)
  41. 41.
    Expert Working Group (Quality) of the ICH (1996) ICH-Q2Bn: Validations of analytical procedures: methodology. In: Proc Int Conf on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), November 1996, Geneva, SwitzerlandGoogle Scholar
  42. 42.
    Brondi SHG, Lanças FM (2004) J Chromatogr B 27:171–178Google Scholar
  43. 43.
    Meyer V (1988) Practical high-performance liquid chromatography. Wiley, New YorkGoogle Scholar
  44. 44.
    Muldoon MT, Stan LH (1997) Anal Chem 69:803–809CrossRefGoogle Scholar
  45. 45.
    Prousalis KP, Polygenis DA, Syrokou A, Lamari FN, Tsegenidis T (2004) Anal Bioanal Chem 379:458–463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Djenaine De Souza
    • 1
    Email author
  • Renata A. de Toledo
    • 2
  • Andressa Galli
    • 1
  • Giancarlo R. Salazar-Banda
    • 1
  • Maria R. C. Silva
    • 1
  • Gustavo S. Garbellini
    • 1
  • Luiz H. Mazo
    • 1
  • Luis A. Avaca
    • 1
  • Sergio A. S. Machado
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Embrapa Instrumentação AgropecuáriaSão CarlosBrazil

Personalised recommendations