Analytical and Bioanalytical Chemistry

, Volume 387, Issue 6, pp 2297–2305 | Cite as

Fluorescent sensing layer for the determination of L-malic acid in wine

  • Félix Gallarta
  • Francisco Javier Sáinz
  • Cecilia Sáenz
Original Paper

Abstract

An enzymatic method for determining L-malic acid in wine based on an L-malate sensing layer with nicotinamide adenine dinucleotide (NAD+), L-malate dehydrogenase (L-MDH) and diaphorase (DI), immobilized by sol-gel technology, was constructed and evaluated. The sol-gel glass was prepared with tetramethoxysilane (TMOS), water and HCl. L-MDH catalyzes the reaction between L-malate and NAD+, producing NADH, whose fluorescence (λexc = 340 nm, λem = 430 nm) could be directly related to the amount of L-malate. NADH is converted to NAD+ by applying hexacyanoferrate(III) as oxidant in the presence of DI. Some parameters affecting sol-gel encapsulation and the pH of the enzymatic reaction were studied. The sensing layer has a dynamic range of 0.1–1.0 g/L of L-malate and a long-term storage stability of 25 days. It exhibits acceptable reproducibility [sr(%)≈10] and allows six regenerations. The content of L-malic acid was determined for different types of wine, and polyvinylpolypyrrolidone (PVPP) was used as a bleaching agent with red wine. The results obtained for the wine samples using the sensing layer are comparable to those obtained from a reference method based on UV-vis molecular absorption spectrometry, if the matrix effect is corrected for.

Keywords

Sensing layer L-Malate dehydrogenase Sol-gel L-Malate Wines 

References

  1. 1.
    Furia TE (ed) (1972) Handbook of food additives, 2nd edn. CRC Press, Cleveland, OHGoogle Scholar
  2. 2.
    Pomeranz Y, Meloan CE (eds) (1994) Food analysis: theory and practice, 3rd edn. Chapman & Hall, New YorkGoogle Scholar
  3. 3.
    Delcourt F, Taillandier P, Vidal F, Strehaiano P (1995) Appl Microbiol Biotechnol 43:321–324CrossRefGoogle Scholar
  4. 4.
    Pretorius IS (2000) Yeast 16:675–729CrossRefGoogle Scholar
  5. 5.
    Silva FO, Ferraz V (2004) Food Chem 88:609–612CrossRefGoogle Scholar
  6. 6.
    Palma M, Barroso CG (2002) Anal Chim Acta 458:119–130CrossRefGoogle Scholar
  7. 7.
    Chinnici F, Spinabelli U, Riponi C, Amati A (2005) J Food Compos Anal 18:121–130CrossRefGoogle Scholar
  8. 8.
    Kupina SA, Pohl CA, Gannotti JL (1991) Am J Enol Vitic 42:1–5Google Scholar
  9. 9.
    Blanty P, Kvasnicka F, Kenndler E (1996) J Chromatogr A 737:255–262CrossRefGoogle Scholar
  10. 10.
    Jamin E, González J, Remaud G, Naulet N, Martín GG (1997) J Agric Food Chem 45:3961–3967CrossRefGoogle Scholar
  11. 11.
    LeThanh H, Lendl B (2000) Anal Chim Acta 422:63–69CrossRefGoogle Scholar
  12. 12.
    Segundo MA, Rangel AOSS (2003) Anal Chim Acta 499:99–106CrossRefGoogle Scholar
  13. 13.
    Tsukatani T, Matsumoto K (2005) Talanta 65:396–401CrossRefGoogle Scholar
  14. 14.
    Gué AM, Tap H, Gros P, Maury F (2002) Sens Actuators B 82:227–232CrossRefGoogle Scholar
  15. 15.
    Lupu A, Compagnone D, Palleschi G (2004) Anal Chim Acta 513:67–72CrossRefGoogle Scholar
  16. 16.
    Gros P, Comtat M (2004) Biosens Bioelectron 20:204–210CrossRefGoogle Scholar
  17. 17.
    Lehninger A, Nelson D, Cox M (1993) Principles of biochemistry, 2nd edn. Worth, New YorkGoogle Scholar
  18. 18.
    Pérez C (1996) Sensores ópticos. Universitat de Valencia, ValenciaGoogle Scholar
  19. 19.
    Blyth DJ, Poynter SJ, Russell DA (1996) Analyst 121:1975–1978CrossRefGoogle Scholar
  20. 20.
    Wang J, Pamidi PVA (1997) Anal Chem 69:4490–4494CrossRefGoogle Scholar
  21. 21.
    Williams AK, Hupp JT (1998) J Am Chem Soc 120:4366–4371CrossRefGoogle Scholar
  22. 22.
    Li CI, Lin YH, Shih CL, Tsaur JP, Chau LK (2002) Biosens Bioelectron 17:323–330CrossRefGoogle Scholar
  23. 23.
    Couto CM, Araújo AN, Montenegro MC, Rohwedder J, Raimundo I, Pasquini C (2002) Talanta 56:997–1003CrossRefGoogle Scholar
  24. 24.
    Ding JY, Shih PY, Yin CK (2004) Mater Chem Phys 84:263–272CrossRefGoogle Scholar
  25. 25.
    Butler TM, MacCraith BD, McDonagh C (1998) J Non-Cryst Solids 224:249–258CrossRefGoogle Scholar
  26. 26.
    Pastor I, Esquembre R, Micol V, Mallavia R, Mateo CR (2004) Anal Biochem 334:335–343CrossRefGoogle Scholar
  27. 27.
    Abbas H, Tiwary KP, Singh LSS, Zulfequar M, Zaidi ZH, Husain M (2005) J Lumin 114:162–166CrossRefGoogle Scholar
  28. 28.
    Yang P, Lü MK, Song CF, Xu D, Yuan DR, Gu F (2002) Mater Sci Eng B 90:99–102CrossRefGoogle Scholar
  29. 29.
    García C, Galliano P, Ceré S (2003) Mater Lett 57:1810–1814CrossRefGoogle Scholar
  30. 30.
    Ough CS, Amerine MA (1987) Methods for analysis of musts and wines. Wiley-Interscience, New YorkGoogle Scholar
  31. 31.
    Xi Y, Liangying Z, Sasa W (1995) Sens Actuators B 24–25:347–352CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Félix Gallarta
    • 1
  • Francisco Javier Sáinz
    • 1
  • Cecilia Sáenz
    • 1
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryUniversity of La RiojaLogroñoSpain

Personalised recommendations