Analytical and Bioanalytical Chemistry

, Volume 387, Issue 3, pp 965–975 | Cite as

An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples

  • Annika Jahnke
  • Lutz Ahrens
  • Ralf Ebinghaus
  • Urs Berger
  • Jonathan L. Barber
  • Christian Temme
Original Paper


This article describes the optimisation and validation of an analytical method for the determination of volatile polyfluorinated alkyl substances (PFAS) in environmental air samples. Airborne fluorinated telomer alcohols (FTOHs) as well as fluorinated sulfonamides and sulfonamidoethanols (FOSAs/FOSEs) were enriched on glass-fibre filters (GFFs), polyurethane foams (PUFs) and XAD-2 resin by means of high-volume air samplers. Sensitive and selective determination was performed using gas chromatography/chemical ionisation–mass spectrometry (GC/CI–MS). Five mass-labelled internal standard (IS) compounds were applied to ensure the accuracy of the analytical results. No major blank problems were encountered. Recovery experiments were performed, showing losses of the most volatile compounds during extraction and extract concentration as well as strong signal enhancement for FOSEs due to matrix effects. Breakthrough experiments revealed losses of the most volatile FTOHs during sampling, while FOSAs/FOSEs were quantitatively retained. Both analyte losses and matrix effects could be remediated by application of adequate mass-labelled IS. Method quantification limits (MQLs) of the optimised method ranged from 0.2 to 2.5 pg/m3 for individual target compounds. As part of the method validation, an interlaboratory comparison of instrumental quantification methods was conducted. The applicability of the method was demonstrated by means of environmental air samples from an urban and a rural location in Northern Germany.


High-volume air sampling of volatile polyfluorinated alkyl substances using glass fibre filters and PUF/XAD-2 cartridges at a background monitoring site (Waldhof, Germany)


Fluorotelomer alcohols Fluorooctane sulfonamides/sulfonamidoethanols High-volume air sampling GC/PCI–MS Isotope-labelled internal standards Matrix effects 



The authors kindly acknowledge Norbert Socha from 3M, Germany, for the donation of the NMeFOSA and NMeFOSE standards. We thank Scott Mabury and his group from the University of Toronto for the donation of NEtFOSE.


  1. 1.
    Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, van Wouwe N, Yang JH, Aldous KM (2004) Environ Sci Technol 38:4489–4495CrossRefGoogle Scholar
  2. 2.
    Kärrman A, van Bavel B, Järnberg U, Hardell L, Lindström G (2005) Anal Chem 77:864–870CrossRefGoogle Scholar
  3. 3.
    De Silva A, Mabury SA (2006) Environ Sci Technol 40:2903–2909CrossRefGoogle Scholar
  4. 4.
    Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, Uno A, Saijo Y, Sata F, Yoshimura Y, Kishi R, Nakazawa H (2004) Environ Health Perspect 112:1204–1207CrossRefGoogle Scholar
  5. 5.
    Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SMJ (2003) Environ Health Perspect 111:1485–1489CrossRefGoogle Scholar
  6. 6.
    Holmström KE, Järnberg U, Bignert A (2005) Environ Sci Technol 39:80–84CrossRefGoogle Scholar
  7. 7.
    Renner R (2001) Environ Sci Technol 35:154A–160ACrossRefGoogle Scholar
  8. 8.
    Schultz MM, Barofsky DF, Field JA (2003) Environ Eng Sci 20:487–501CrossRefGoogle Scholar
  9. 9.
    De Voogt P, Saez M (2006) Trac—Trends Anal Chem 25:326–342CrossRefGoogle Scholar
  10. 10.
    Ellis DA, Martin JW, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ (2003) Environ Sci Technol 37:3816–3820CrossRefGoogle Scholar
  11. 11.
    Dinglasan MJA, Ye Y, Edwards EA, Mabury SA (2004) Environ Sci Technol 38:2857–2864CrossRefGoogle Scholar
  12. 12.
    Smithwick M, Mabury SA, Solomon KR, Sonne C, Martin JW, Born EW, Dietz R, Derocher AE, Letcher RJ, Evans TJ, Gabrielsen GW, Nagy J, Stirling I, Taylor MK, Muir DCG (2005) Environ Sci Technol 39:5517–5523CrossRefGoogle Scholar
  13. 13.
    Kannan K, Franson JC, Bowerman WW, Hansen KJ, Jones PD, Giesy JP (2001) Environ Sci Technol 35:3065–3070CrossRefGoogle Scholar
  14. 14.
    Giesy JP, Kannan K (2001) Environ Sci Technol 35:1339–1342CrossRefGoogle Scholar
  15. 15.
    Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ (2004) Environ Sci Technol 38:3316–3321CrossRefGoogle Scholar
  16. 16.
    Martin JW, Muir DCG, Moody CA, Ellis DA, Kwan WC, Solomon KR, Mabury SA (2002) Anal Chem 74:584–590CrossRefGoogle Scholar
  17. 17.
    Stock NL, Lau FK, Ellis DA, Martin JW, Muir DCG, Mabury SA (2004) Environ Sci Technol 38:991–996CrossRefGoogle Scholar
  18. 18.
    D’Eon J, Hurley MD, Wallington TJ, Mabury SA (2006) Environ Sci Technol 40:1862–1868CrossRefGoogle Scholar
  19. 19.
    Martin JW, Ellis DA, Mabury SA, Hurley MD, Wallington TJ (2006) Environ Sci Technol 40:864–872CrossRefGoogle Scholar
  20. 20.
    Wang N, Szostek B, Folsom PW, Sulecki LM, Capka V, Buck RC, Berti WR, Gannon JT (2005) Environ Sci Technol 39:531–538CrossRefGoogle Scholar
  21. 21.
    Tomy GT, Tittlemier SA, Palace VP, Budakowski WR, Braekevelt E, Brinkworth L, Friesen K (2004) Environ Sci Technol 38:758–762CrossRefGoogle Scholar
  22. 22.
    Shoeib M, Harner T, Ikonomou M, Kannan K (2004) Environ Sci Technol 38:1313–1320CrossRefGoogle Scholar
  23. 23.
    Berger U, Langlois I, Oehme M, Kallenborn R (2004) Eur J Mass Spectrom 10:579–588CrossRefGoogle Scholar
  24. 24.
    Taniyasu S, Kannan K, So MK, Gulkowska A, Sinclair E, Okazawa T, Yamashita N (2005) J Chromatogr A 1093:89–97CrossRefGoogle Scholar
  25. 25.
    Boulanger B, Vargo J, Schnoor JL, Hornbuckle KC (2004) Environ Sci Technol 38:4064–4070CrossRefGoogle Scholar
  26. 26.
    Boulanger B, Peck AM, Schnoor JL, Hornbuckle KC (2005) Environ Sci Technol 39:74–79CrossRefGoogle Scholar
  27. 27.
    Giesy JP, Kannan K (2002) Environ Sci Technol 36:146A–152ACrossRefGoogle Scholar
  28. 28.
    Jahnke A, Ahrens L, Ebinghaus R, Temme C Environ Sci Technol doi:10.1021/es0619861
  29. 29.
    Ellis DA, Mabury SA (2003) J Am Soc Mass Spectrom 14:1177–1191CrossRefGoogle Scholar
  30. 30.
    ISO (2004) Draft International Standard ISO/DIS 22032 2004: Water quality: determination of selected polybrominated diphenyl ethers in sediment and sewage sludge. Method using extraction and gas chromatography/mass spectrometry (ISO/TC 147/SC 2). International Organization for Standardization, GenevaGoogle Scholar
  31. 31.
    Shoeib M, Harner T, Wilford BH, Jones KC, Zhu J (2005) Environ Sci Technol 39:6599–6606CrossRefGoogle Scholar
  32. 32.
    Berger U, Barber JL, Jahnke A, Temme C, Jones KC (2005) Poster at the Int Symp on Fluorinated Alkyl Organics in the Environment, 18–20 August 2005, Toronto, Canada (see, last accessed 24th November 2006)
  33. 33.
    Erney DR, Gillespie AM, Gilvydis DM, Poole CF (1993) J Chromatogr A 638:57–63CrossRefGoogle Scholar
  34. 34.
    Schenck FJ, Lehotay SJ (2000) J Chromatogr A 868:51–61CrossRefGoogle Scholar
  35. 35.
    Maras M, Vanparys C, Muylle F, Robbens J, Berger U, Barber JL, Blust R, De Coen W (2006) Environ Health Perspect 114:100–105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Annika Jahnke
    • 1
    • 2
  • Lutz Ahrens
    • 1
    • 2
  • Ralf Ebinghaus
    • 1
  • Urs Berger
    • 3
    • 4
  • Jonathan L. Barber
    • 5
  • Christian Temme
    • 1
  1. 1.Department of Environmental ChemistryInstitute for Coastal Research, GKSS Research CentreGeesthachtGermany
  2. 2.Institute for Ecology and Environmental Chemistry, Faculty of Environmental SciencesUniversity of LüneburgLüneburgGermany
  3. 3.Norwegian Institute for Air Research (NILU), The Polar Environmental CentreTromsøNorway
  4. 4.Department of Applied Environmental Science (ITM)Stockholm UniversityStockholmSweden
  5. 5.Department of Environmental Science, Faculty of Science and TechnologyLancaster UniversityLancasterUK

Personalised recommendations