Advertisement

Analytical and Bioanalytical Chemistry

, Volume 387, Issue 3, pp 1041–1048 | Cite as

An adaptive strategy for selecting representative calibration samples in the continuous wavelet domain for near-infrared spectral analysis

  • Da Chen
  • Wensheng Cai
  • Xueguang Shao
Original Paper

Abstract

Sample selection is often used to improve the cost-effectiveness of near-infrared (NIR) spectral analysis. When raw NIR spectra are used, however, it is not easy to select appropriate samples, because of background interference and noise. In this paper, a novel adaptive strategy based on selection of representative NIR spectra in the continuous wavelet transform (CWT) domain is described. After pretreatment with the CWT, an extension of the Kennard–Stone (EKS) algorithm was used to adaptively select the most representative NIR spectra, which were then submitted to expensive chemical measurement and multivariate calibration. With the samples selected, a PLS model was finally built for prediction. It is of great interest to find that selection of representative samples in the CWT domain, rather than raw spectra, not only effectively eliminates background interference and noise but also further reduces the number of samples required for a good calibration, resulting in a high-quality regression model that is similar to the model obtained by use of all the samples. The results indicate that the proposed method can effectively enhance the cost-effectiveness of NIR spectral analysis. The strategy proposed here can also be applied to different analytical data for multivariate calibration.

Keywords

Sample selection Near-infrared spectroscopy Continuous wavelet transform Extension of the Kennard–Stone (EKS) algorithm 

Notes

Acknowledgement

This study is supported by National Natural Science Foundation (Nos 20325517 and 20575031), the Ph.D. Programs Foundation of the Ministry of Education (MOE) of China (No. 20050055001), and the Teaching and Research Award Program for Outstanding Young Teachers (TRAPOYT) in High Education Institutions of the MOE of China.

References

  1. 1.
    Golic M, Walsh K, Lawson P (2003) Appl Spectrosc 57:139–145PubMedCrossRefGoogle Scholar
  2. 2.
    Chen D, Wang F, Shao XG, Su QD (2003) Analyst 128:1200–1203CrossRefGoogle Scholar
  3. 3.
    Luypaert J, Zhang MH, Massart DL (2003) Anal Chim Acta 478:303–312CrossRefGoogle Scholar
  4. 4.
    Boschetti CE, Olivieri AC (2001) J Near Infrared Spectrosc 9:245–254Google Scholar
  5. 5.
    Breitkreitz MC, Raimundo IM Jr, Rohwedder JJR, Pasquini C, Dantas-Filho HA, José GE, Araújo MCU (2003) Analyst 128:1204–1207PubMedCrossRefGoogle Scholar
  6. 6.
    Walsh KB, Golic M, Greensill CV (2004) J Near Infrared Spectrosc 12:141–148Google Scholar
  7. 7.
    Olivieri AC, Faber NKM, Ferré J, Boque R, Kalivas JH, Mark H (2006) Pure Appl Chem 78:633–661CrossRefGoogle Scholar
  8. 8.
    Chen D, Shao XG, Hu B, Su QD (2004) Anal Chim Acta 511:37–45CrossRefGoogle Scholar
  9. 9.
    Chen D, Hu B, Shao XG, Su QD (2005) Anal Bioanal Chem 381:795–805PubMedCrossRefGoogle Scholar
  10. 10.
    Puchwein G (1988) Anal Chem 60:569–573CrossRefGoogle Scholar
  11. 11.
    Jouan-Rimbaud D, Massart DL, Saby CA, Puel C (1997) Anal Chim Acta 350:149–161CrossRefGoogle Scholar
  12. 12.
    Goicoechea HC, Olivieri AC (2001) Analyst 126:1105–1112PubMedCrossRefGoogle Scholar
  13. 13.
    Wu W, Walczak B, Massart DL, Heuerding S, Erni F, Last IR, Prebble KA (1996) Chemometr Intell Lab Syst 33:35–46CrossRefGoogle Scholar
  14. 14.
    Zhou ZH, Wu JX, Tang W (2002) Artif Intell 137:239–263zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ferré J, Rius FX (1996) Anal Chem 68:1565–1571CrossRefGoogle Scholar
  16. 16.
    Ferré J, Rius FX (1997) Trends Anal Chem 16:70–73CrossRefGoogle Scholar
  17. 17.
    Dantas-Filho HA, Galvão RKH, Araújo MCU, da Silva EC, Saldanha TCB, José GE, Pasquini C, Raimundo IM Jr, Rohwedder JJR (2004) Chemometr Intell Lab Syst 72:83–91CrossRefGoogle Scholar
  18. 18.
    Kennard RW, Stone LA (1969) Technometrics 11:137–148zbMATHCrossRefGoogle Scholar
  19. 19.
    Daszykowski M, Walczak B, Massart DL (2002) Anal Chim Acta 468:91–103CrossRefGoogle Scholar
  20. 20.
    Fedorov VV (1972) In: Studden WJ, Klimko EM (eds) Theory of optimal experiments. Academic Press, New YorkGoogle Scholar
  21. 21.
    Rius A, Callao MP, Ferré J, Rius FX (1997) Anal Chim Acta 337:287–296CrossRefGoogle Scholar
  22. 22.
    Bouveresse E, Hartmann C, Massart DL, Last IR, Prebble KA (1996) Anal Chem 68:982–990CrossRefGoogle Scholar
  23. 23.
    deGroot PJ, Postma GJ, Melssen WJ, Buydens LMC (1999) Anal Chim Acta 392:67–75CrossRefGoogle Scholar
  24. 24.
    Galvão RKH, Araújo MCU, José GE, Pontes MJC, Saldanha TCB (2005) Talanta 67:736–740CrossRefGoogle Scholar
  25. 25.
    Gorry PA (1990) Anal Chem 62:570–573CrossRefGoogle Scholar
  26. 26.
    Chen D, Hu B, Shao XG, Su QD (2004) Analyst 129:664–669PubMedCrossRefGoogle Scholar
  27. 27.
    Shao XG, Leung AKM, Chau FT (2003) Accounts Chem Res 36:276–283CrossRefGoogle Scholar
  28. 28.
    Chen D, Hu B, Shao XG, Su QD (2004) Anal Bioanal Chem 379:143–148PubMedCrossRefGoogle Scholar
  29. 29.
    Mittermary CR, Tan HW, Brown SD (2001) Appl Spectrosc 55:827–833CrossRefADSGoogle Scholar
  30. 30.
    Ma CX, Shao XG (2004) J Chem Inf Comput Sci 44:907–911PubMedCrossRefGoogle Scholar
  31. 31.
    Shao XG, Pang CY, Su QD (2000) Fresenius J Anal Chem 367:525–529PubMedCrossRefGoogle Scholar
  32. 32.
    Lin J (1998) Appl Spectrosc 52:1591–1596CrossRefADSGoogle Scholar
  33. 33.
    Fearn T (1996) NIR news 7:5–6Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryNankai UniversityTianjinChina

Personalised recommendations