Advertisement

Analytical and Bioanalytical Chemistry

, Volume 387, Issue 2, pp 575–584 | Cite as

Investigation, by single photon ionisation (SPI)–time-of-flight mass spectrometry (TOFMS), of the effect of different cigarette-lighting devices on the chemical composition of the first cigarette puff

Original Paper

Abstract

Soft single-photon ionisation (SPI)–time-of-flight mass spectrometry (TOFMS) has been used to investigate the effect of different cigarette-lighting devices on the chemical composition of the mainstream smoke from the first cigarette puff. Lighting devices examined were a Borgwaldt electric lighter, a propane/butane gas lighter, a match, a candle, and the burning zone of another cigarette. To eliminate the effects of the different masses of tobacco burnt by use of the different lighting methods a normalisation procedure was performed which enabled investigation of changes in the chemical patterns of the resulting smoke. When another cigarette was used as the lighting device, elevated levels of ammonia and other nitrogen-containing substances were observed. These are high in the sidestream smoke of the cigarette used for lighting and would be drawn into the mainstream smoke of the cigarette being lit. In contrast, smoke from the cigarette lit by the electric lighter contained slightly higher normalised amounts of isoprene. Lighting the cigarette by use of a candle resulted in larger amounts of substances, e.g. benzene, which most probably originated from thermal decomposition of wax. The composition of the first puff of smoke obtained by use of the three lighting methods with open flames (gas lighter, match, and candle) was usually similar whereas the composition of the smoke produced by use of the electric lighter and the cigarette as the lighter were more unique. The chemical patterns generated by the different lighting devices could, however, be separated by principal-component analyses. Two additional test series were also studied. In the first the cigarette was lit with an electric lighter, then extinguished, the ash was cut off, and the cigarette was re-lit. In the second the cigarette was heated in an oven to 80 °C for 5 min before being lit. These treatments did not result in changes in the chemical composition compared with cigarettes lit in the ordinary way.

Figure

Time-of-flight mass spectrometry (TOFMS) has been used to investigate the effect of different cigarette-lighting devices on the chemical composition of the mainstream smoke from the first cigarette puff

Keywords

Single-photon ionisation Cigarette smoke Tobacco Principal-component analysis First puff 

References

  1. 1.
    Baker RR (1999) Smoke chemistry In: Davis LD, Nielsen MT (eds) Tobacco: Production, Chemistry, and Technology. Blackwell Science, Oxford, UKGoogle Scholar
  2. 2.
    Gaworski CL, Dozier MM, Eldridge SR, Morrissey R, Rajendran N, Gerhart JM (1998) Inhal Toxicol 10:857–873CrossRefGoogle Scholar
  3. 3.
    Norman V (1977) Rec Adv Tob Sci 3:28–58Google Scholar
  4. 4.
    Green CR, Rodgman A (1996) Rec Adv Tob Sci 22:131–304Google Scholar
  5. 5.
    Holtzclaw J, Rose S, Wyatt J, Rounbehler D, Fine D (1984) Anal Chem 56:2952–2956CrossRefGoogle Scholar
  6. 6.
    Baren RE, Parrish ME, Shafer KH, Harward CN, Shi Q, Nelson DD, McManus JB, Zahniser MS (2004) Spectrochim Acta A 60:3437–3447CrossRefGoogle Scholar
  7. 7.
    Vilcins G (1975) Beitr Tabakforsch Int 8(4):181–185Google Scholar
  8. 8.
    Ceschini P, Lafaye A (1976) Beitr Tabakforsch Int 8(6):378–381Google Scholar
  9. 9.
    Parrish ME, Lyons-Hart JL, Shafer KH (2001) Vib Spectrosc 27:29–42CrossRefGoogle Scholar
  10. 10.
    Li S, Banyasz JL, Parrish ME, Lyons-Hart J, Shafer KH (2002) J Anal Appl Pyrol 65:137–145Google Scholar
  11. 11.
    Parrish ME, Harward CN, Vilcins G (1986) Beitr Tabakforsch Int 13(4):169–181Google Scholar
  12. 12.
    Parrish ME, Harward CN (2000) Appl Spectrosc 54(11):1665–1677CrossRefGoogle Scholar
  13. 13.
    Shi Q, Nelson DD, McManus JB, Zahniser MS, Parrish ME, Baren RE, Shafer KH, Harward CN (2003) Anal Chem 75:5180–5190CrossRefGoogle Scholar
  14. 14.
    Plunkett S, Parrish ME, Shafer KH, Nelson D, Shorter J, Zahniser M (2001) Vib Spectrosc 27:53–63CrossRefGoogle Scholar
  15. 15.
    Plunkett S, Parrish ME, Shafer KH, Shorter JH, Nelson DD, Zahniser MS (2002) Spectrochim Acta A 58:2505–2517CrossRefGoogle Scholar
  16. 16.
    Thomas CE, Koller KB (2001) Beitr Tabakforsch Int 19(7):345–351Google Scholar
  17. 17.
    Li S, Olegario RM, Banyasz JL, Shafer KH (2003) J Anal Appl Pyrol 66:156–163Google Scholar
  18. 18.
    Wagner KA, Higby R, Stutt K (2005) Beitr Tabakforsch Int 21(5):273–279Google Scholar
  19. 19.
    Baker RR, Proctor CJ (2001) 2001–A smoke odyssey Conference Proceeding at Coresta 2001 Xian, ChinaGoogle Scholar
  20. 20.
    Zimmermann R, Heger HJ, Kettrup A (1999) Fresenius J Anal Chem 363:720–730CrossRefGoogle Scholar
  21. 21.
    Mitschke S, Adam T, Streibel T, Baker RR, Zimmermann R (2005) Anal Chem 77(8):2288–2296CrossRefGoogle Scholar
  22. 22.
    Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R (2006) Chem Res Toxicol 19:511–520CrossRefGoogle Scholar
  23. 23.
    Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R (2006) Anal Chim Acta 572:219–229CrossRefGoogle Scholar
  24. 24.
    Li S, Banyasz JL, Olegario RM, Huang CB, Lambert EA, Shafer KH (2002) Combust. Flame 128:314–319CrossRefGoogle Scholar
  25. 25.
    Mühlberger F, Hafner K, Kaesdorf S, Ferge T, Zimmermann R (2004) Anal Chem 76(22):6753–6764Google Scholar
  26. 26.
    Cao L, Mühlberger F, Adam T, Streibel T, Wang HZ, Kettrup A, Zimmermann R (2003) Anal Chem 75(21):5639–5645CrossRefGoogle Scholar
  27. 27.
    Chen PX, Moldoveanu SC (2003) Beitr Tabakforsch Int 20(7):448–458Google Scholar
  28. 28.
    Baker RR (2002) Beitr Tabakforsch Int 20(1):23–41Google Scholar
  29. 29.
    Adam T (2006) Investigation of tobacco pyrolysis gases and puff-by-puff resolved cigarette smoke by single photon ionisation (SPI)–time-of-flight mass spectrometry (TOFMS) PhD thesis Technische Universität MünchenGoogle Scholar
  30. 30.
    Baker RR (1975) High Temp Sci 7:236–247Google Scholar
  31. 31.
    Hoffmann D, Hoffmann I (1997) J Toxicol Environ Health 50:307–364CrossRefGoogle Scholar
  32. 32.
    Fowles J, Bates M (2000) The chemical constituents in cigarettes and cigarette smoke: priorities for harm reduction, a report to the New Zealand Ministry of Health Kenepuru Science CentreGoogle Scholar
  33. 33.
    Fowles J, Dybing E (2003) Tob Control 12:424–430CrossRefGoogle Scholar
  34. 34.
    Vorhees DJ, Heiger-Bernays W, McClean MD (1997). Human health risk associated with cigarette smoke: the link between smoke constituents and additives Menzie-Cura and Associates. Report supported by the Massachusettes Department of Public Health Tobacco Control ProgramGoogle Scholar
  35. 35.
    Rodgman A, Green CR (2003) Beitr Tabakforsch Int 20(8):481–545Google Scholar
  36. 36.
    Fisher R (1936) Ann Eugenics 7:179–188Google Scholar
  37. 37.
    Duda RO, Hart PE (eds) (1973) Pattern classification and scene analysis. Wiley, New YorkGoogle Scholar
  38. 38.
    Marini F, Magri AL, Balestrieri F, Fabretti F, Marini D (2004) Anal Chim Acta 515:117–125CrossRefGoogle Scholar
  39. 39.
    Yoshida H, Leardi R, Funatsu K, Varmuza K (2001) Anal Chim Acta 446:485–494CrossRefGoogle Scholar
  40. 40.
    Egan WJ, Galipo RC, Kochanowski BK, Morgan SL, Bartick EG, Miller ML, Ward DC, Mothershead RF (2003) 376:1286–1297Google Scholar
  41. 41.
    Shaw AD, diCamillo A, Vlahov G, Jones A, Bianchi G, Rowland J, Kell DB (1997) Anal Chim Acta 348:357–374CrossRefGoogle Scholar
  42. 42.
    Biasioli F, Gasperi F, Aprea E, Mott D, Boscaini E, Mayr D, Märk TD (2003) J Agric Food Chem 51:7227–7233CrossRefGoogle Scholar
  43. 43.
    Krishnan S, Samdravijava K, Rao PVS (1996) Pattern Recognit Lett 17:803–809CrossRefGoogle Scholar
  44. 44.
    Baker RR, Crellin RA (1977) Beitr Tabakforsch Int 9(3):131–140Google Scholar
  45. 45.
    Baker RR, Robinson DP (1990) Rec Adv Tob Sci 16:3–101Google Scholar
  46. 46.
    Stedman RL (1968) Chem Rev 68:153–207CrossRefGoogle Scholar
  47. 47.
    Scheijen MA, Brandt-de Boer B, Boon JJ, Hass W, Heemann V (1989) Beitr Tabakforsch Int 14(5):261–282Google Scholar
  48. 48.
    Shin E-J, Hajaligol MR, Rasouli F (2003) J Anal Appl Pyrol 68–69:213–229CrossRefGoogle Scholar
  49. 49.
    Im H, Rasouli F, Hajaligol M (2003) J Anal Appl Pyrol 51:7366–7372Google Scholar
  50. 50.
    Baker RR, Kilburn KD (1973) Beitr Tabakforsch Int 7(2):79–87Google Scholar
  51. 51.
    Seeman JI, Dixon M, Haussmann H-J (2002) Chem Res Toxicol 15(11):1331–1350CrossRefGoogle Scholar
  52. 52.
    Schlotzhauer WS, Chortyk OT (1987) J Anal Appl Pyrol 12:193–222CrossRefGoogle Scholar
  53. 53.
    Baker RR (1987) J Anal Appl Pyrol 11:555–573CrossRefGoogle Scholar
  54. 54.
    Schmeltz I, Schlotzhauer WS, Higman EB (1972) Beitr Tabakforsch Int 6(3):134–138Google Scholar
  55. 55.
    Wynder EL, Hoffmann PE (eds) (1967) Tobacco and tobacco smoke. Studies in experimental carcinogenesis. Academic, New YorkGoogle Scholar
  56. 56.
    Schlotzhauer WS, Arrendale RF, Chortyk OT (1985) Beitr Tabakforsch Int 13(2):74–80Google Scholar
  57. 57.
    Halket JM (1985) J Anal Appl Pyrol 8:547–560CrossRefGoogle Scholar
  58. 58.
    Stotesbury SS, Digard H, Willoughby L, Couch A (1999) Beitr Tabakforsch Int 18(4):147–163Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thomas Adam
    • 1
    • 2
  • Richard R. Baker
    • 3
    • 4
  • Ralf Zimmermann
    • 1
    • 2
    • 5
  1. 1.Division of Analytical Chemistry, Institute of PhysicsUniversity of AugsburgAugsburgGermany
  2. 2.Institute of Ecological ChemistryGSF - National Research Centre for Environment and HealthNeuherbergGermany
  3. 3.British American TobaccoR&D CentreSouthamptonUK
  4. 4.SouthamptonUK
  5. 5.Department of Environmental ChemistryBIfA - Bavarian Institute of Applied Environmental Research and Technology GmbHAugsburgGermany

Personalised recommendations