Analytical and Bioanalytical Chemistry

, Volume 387, Issue 2, pp 627–635

Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining

  • M. J. Ruiz-Chancho
  • J. F. López-Sánchez
  • R. Rubio
Original Paper


A study is performed to evaluate the occurrence of arsenic in polluted soils using acidic extractions and liquid chromatography–hydride generation–atomic fluorescence spectrometry (LC–HG–AFS) for speciation analysis. Seven soil samples were collected in an abandoned area polluted by mining in the Eastern Pyrenees (Spain), and two uncontaminated soils were taken for reference purposes. Moreover, the total arsenic content is evaluated in two different sieved fractions in order to obtain information on the possible particle-size-dependent association of arsenic with soil components. Soil samples were extracted with both phosphoric and ascorbic acids and the stabilities of the extracted species were studied. The arsenic species were determined by LC–HG–AFS. In addition, the ability of soil grinding to effect species change is also assessed. Arsenite and arsenate were found in the polluted soils, but only arsenate was found in the unpolluted soils. The quality of the results was assessed through a mass balance calculation and by analysing two soil Certified Reference Materials. Valuable information regarding arsenic occurrence in the studied soils is obtained from the speciation results. The presence of arsenite in the extracts can be attributed to arsenopyrite residues, whereas the presence of arsenate indicates release from weathered material.


Abandoned mining polluted area in Eastern Pyrenees


Arsenic Speciation Soil Sample pretreatment Hyphenated techniques 


  1. 1.
    Cullen WR, Reimer KJ (1989) Chem Rev 89:713–764CrossRefGoogle Scholar
  2. 2.
    Mandal BK, Suzuki KT (2002) Talanta 58:201–235CrossRefGoogle Scholar
  3. 3.
    Yehl PM, Gurleyuk H, Tyson JF, Uden PC (2001) Analyst 126:1511–1518Google Scholar
  4. 4.
    Melamed D (2004) Monitoring arsenic in the environment. A review of science and technologies for field measurements and sensors (EPA 542/R–04/002). US EPA, Washington, DC (see, last accessed 4th November 2006)
  5. 5.
    Garcia-Manyes S, Jiménez G, Padró A, Rubio R, Rauret G (2002) Talanta 58:97–109CrossRefGoogle Scholar
  6. 6.
    Bissen M, Frimmel FH (2000) Fresenius J Anal Chem 367:51–55CrossRefGoogle Scholar
  7. 7.
    Pongratz R (1998) Sci Total Environ 224:133–141CrossRefGoogle Scholar
  8. 8.
    Koellensperger G, Nurmi J, Hann S, Stingeder G, Fitz WJ, Wenzel WW (2002) J Anal Atom Spectrom 17:1042–1047CrossRefGoogle Scholar
  9. 9.
    Guerin T, Molenat N, Astruc A, Pinel R (2000) Appl Organomet Chem 14:401–410CrossRefGoogle Scholar
  10. 10.
    Thomas P, Finnie JK, Williams JG (1997) J Anal Atom Spectrom 12:1367–1372Google Scholar
  11. 11.
    Vergara-Gallardo M, Bohari Y, Astruc A, Poitin-Gaultier M, Astruc M (2001) Anal Chim Acta 441:257–268CrossRefGoogle Scholar
  12. 12.
    Montperrus M, Bohari Y, Bueno M, Astruc A, Astruc M (2002) Appl Organomet Chem 16:347–354CrossRefGoogle Scholar
  13. 13.
    Ruiz-Chancho MJ, Sabé R, López-Sánchez JF, Rubio R, Thomas P (2005) Microchim Acta 151:241–248CrossRefGoogle Scholar
  14. 14.
    Pizarro I, Gómez M, Cámara C, Palacios MA (2003) Anal Chim Acta 495:85–98CrossRefGoogle Scholar
  15. 15.
    Pantsar-Kallio M, Manninen PKG (1997) Sci Total Environ 204:193–200CrossRefGoogle Scholar
  16. 16.
    Manning BA, Martens DA (1997) Environ Sci Technol 31:171–177CrossRefGoogle Scholar
  17. 17.
    Gómez-Ariza JL, Sánchez-Rodas D, Giráldez I (1998) J Anal Atom Spectrom 13:1375–1379CrossRefGoogle Scholar
  18. 18.
    Caballo-López A, Luque de Castro MD (2003) Anal Chem 75:2011–2017CrossRefGoogle Scholar
  19. 19.
    Kahakachchi C, Uden PC, Tyson JF (2004) Analyst 129:714–718CrossRefGoogle Scholar
  20. 20.
    Demesmay C, Ollé M (1997) Fresenius J Anal Chem 357:1116–1121CrossRefGoogle Scholar
  21. 21.
    Ayora C, Phillips R (1981) Bull Mineral 104:556–564Google Scholar
  22. 22.
    Ayora C, Casas JM (1986) Mineral Deposita 21:278–287CrossRefGoogle Scholar
  23. 23.
    Ayora C (1980) Les concentracions metalliques de la Vall de Ribes. Thesis, University of Barcelona, Barcelona, SpainGoogle Scholar
  24. 24.
    Santanach P (1972) Estudio tectónico del Paleozoico inferior del Pirineo entre la Cerdanya y el rio Ter. Thesis, University of Barcelona, Barcelona, SpainGoogle Scholar
  25. 25.
    ISO (1995) ISO10694: Soil quality, determination of organic and total carbon after dry combustion (elementary analysis). International Organization for Standardization (ISO), Geneva, SwitzerlandGoogle Scholar
  26. 26.
    ISO (1995) ISO11466: Extraction of trace elements soluble in aqua regia (international standard). International Organization for Standardization (ISO), Geneva, SwitzerlandGoogle Scholar
  27. 27.
    Department of Agriculture (1986) Spanish official analytical methods for soils, vol 3. Department of Agriculture, MadridGoogle Scholar
  28. 28.
    McGrath S T, Zhao F, Blake-Kalff M (2002) Sulfur in soils: processes, behaviour and measurement (from Proc Int Fertilizer Soc). The International Fertilizer Society, York, UK, p 499Google Scholar
  29. 29.
    Jones CA, Inskeep WP, Neuman DR (1997) J Environ Qual 26:433–439CrossRefGoogle Scholar
  30. 30.
    Sadiq M (1997) Water Air Soil Pollut 93:117–136Google Scholar
  31. 31.
    Dove PM, Rimstidt JD (1985) Am Mineral 70:838–844Google Scholar
  32. 32.
    Garcia-Sánchez A, Alvarez-Ayuso E (2003) J Geochem Explor 80:69–79CrossRefGoogle Scholar
  33. 33.
    Yumnei Y, Yongxuan Z, Williams-Jones A E, Zhenmin G, Dexian L (2004) Appl Geochem 19:435–444CrossRefGoogle Scholar
  34. 34.
    Francesconi KA, Huehnelt D (2004) Analyst 129:373–395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. J. Ruiz-Chancho
    • 1
  • J. F. López-Sánchez
    • 1
  • R. Rubio
    • 1
  1. 1.Departament de Química AnalíticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations