Analytical and Bioanalytical Chemistry

, Volume 387, Issue 3, pp 749–760 | Cite as

Laser-induced breakdown spectroscopy (LIBS) in archaeological science—applications and prospects

  • Anastasia Giakoumaki
  • Kristalia Melessanaki
  • Demetrios Anglos


Laser-induced breakdown spectroscopy (LIBS) has emerged in the past ten years as a promising technique for analysis and characterization of the composition of a broad variety of objects of cultural heritage including painted artworks, icons, polychromes, pottery, sculpture, and metal, glass, and stone artifacts. This article describes in brief the basic principles and technological aspects of LIBS, and reviews several test cases that demonstrate the applicability and prospects of LIBS in the field of archaeological science.


Archaeology Archaeometry LIBS Laser ablation Elemental analysis 


  1. 1.
    Pollard AM, Heron C (1996) Archaeological chemistry. Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  2. 2.
    Ciliberto E, Spoto G (2000) Modern analytical methods in art and archaeology. Chemical analysis. In: Winefordner JD (ed) A series of monographs on analytical chemistry and its applications, vol 155. Wiley, New YorkGoogle Scholar
  3. 3.
    Mirti P (1989) Analytical techniques in art and archaeology. Ann Chim 79:455–477Google Scholar
  4. 4.
    Spoto G, Torrisi A, Contino A (2000) Probing archaeological and artistic solid materials by spatially resolved analytical techniques. Chem Soc Rev 29:429–439CrossRefGoogle Scholar
  5. 5.
    Anglos D, Couris S, Fotakis C (1997) Laser diagnostics of painted artworks: laser induced breakdown spectroscopy of pigments. Appl Spectrosc 51:1025–1030CrossRefADSGoogle Scholar
  6. 6.
    Anglos D (2001) Laser-induced breakdown spectroscopy in art and archaeology. Appl Spectrosc 55:186A–205ACrossRefADSGoogle Scholar
  7. 7.
    Borgia I, Burgio LMF, Corsi M, Fantoni R, Palleschi V, Salvetti A, Scuarcialupi MC, Tognoni E (2000) Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: application to pigment analysis. J Cult Heritage 1:S281–S286CrossRefGoogle Scholar
  8. 8.
    Maravelaki-Kalaitzaki P, Anglos D, Kilikoglou V, Zafiropulos V (2001) Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim Acta B 56:887–903CrossRefGoogle Scholar
  9. 9.
    Melessanaki K, Mateo M, Ferrence SC, Betancourt PP, Anglos D (2002) The application of LIBS for the analysis of archaeological ceramic and metal artefacts. Appl Surf Sci 197–198:156–163CrossRefGoogle Scholar
  10. 10.
    Colao F, Fantoni R, Lazic V, Spizzichino V (2002) Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys. Spectrochim Acta B 57:1219–1234CrossRefGoogle Scholar
  11. 11.
    Müller K, Stege H (2003) Evaluation of the analytical potential of Laser-Induced Breakdown Spectrometry (LIBS) for the analysis of historical glasses. Archaeometry 45:421–433CrossRefGoogle Scholar
  12. 12.
    Corsi M, Cristoforetti G, Giuffrida M, Hidalgo M, Legnaioli S, Masotti L, Palleschi V, Salvetti A, Tognoni E, Vallebona C, Zanini A (2005) Archaeometric analysis of ancient copper artefacts by laser-induced breakdown spectroscopy technique. Microchim Acta 152:105–111CrossRefGoogle Scholar
  13. 13.
    Moens L, von Bohlen A, Vandenabeele P (2000) X-ray fluorescence. In: Winefordner JD (ed) Modern analytical methods in art and archaeology, chemical analysis, a series of monographs on analytical chemistry and its applications, chap 4, vol 155. Wiley, New York, pp 55–79Google Scholar
  14. 14.
    Mantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17CrossRefGoogle Scholar
  15. 15.
    Janssens K, Vittiglio G, Deraedt I, Aerts A, Vekenmans B, Vincze L, Wei F, Deryck I, Schalm O, Adams F, Rindby A, Knöchel A, Simionovici A, Snigirev A (2000) Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrom 29:73–91CrossRefGoogle Scholar
  16. 16.
    Schreiner M, Frühmann B, Jembrih-Simbürger D, Linke R (2004) X-rays in art and archaeology; an overview. Powder Diffr 19:3–11CrossRefGoogle Scholar
  17. 17.
    Zarkadas C, Karydas AG (2004) A portable semi-micro-X-ray fluorescence spectrometer for archaeometrical studies. Spectrochim Acta B 59:1611–1618CrossRefGoogle Scholar
  18. 18.
    Dran J-C, Calligaro T, Salomon J (2000) Particle-induced X-ray emission. In: Winefordner JD (ed) Modern analytical methods in art and archaeology, chemical analysis, a series of monographs on analytical chemistry and its applications, chap 6, vol 155. Wiley, New York, pp 135–166Google Scholar
  19. 19.
    Dran J-C, Salomon J, Calligaro T, Walter P (2004) Ion beam analysis of art works: 14 years of use in the Louvre. Nucl Instr Methods Phys Res B 219–220:7–15CrossRefGoogle Scholar
  20. 20.
    Wess TJ, Drakopoulos M, Snigirev A, Wouters J, Paris O, Fratzl P, Collins M, Hiller J, Nielsen K (2001) The use of small-angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43:117–129CrossRefGoogle Scholar
  21. 21.
    Smith GD, Clark RJH (2004) Raman microscopy in archaeological science. J Archaeol Sci 31:1137–1160CrossRefGoogle Scholar
  22. 22.
    Colomban P (2004) Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Appl Phys A 79:167–170CrossRefADSGoogle Scholar
  23. 23.
    Derrick MR, Stulik DC, Landry JM (2000) Infrared spectroscopy in conservation science. J Paul Getty Trust Publications, Los Angeles, USAGoogle Scholar
  24. 24.
    Salvado N, Buti S, Tobin MJ, Pantos E, Prag AJNW, Pradell T (2005) Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage. Anal Chem 77:3444–3451PubMedCrossRefGoogle Scholar
  25. 25.
    Gratuze B, Blet-Lemarquand M, Barrandon JN (2001) Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. J Radioanal Nuclear Chem 247:645–656CrossRefGoogle Scholar
  26. 26.
    Young SMM, Budd P, Haggerty R, Pollard AM (1997) Inductively coupled plasma-mass spectrometry for the analysis of ancient metals. Archaeometry 39:379–392Google Scholar
  27. 27.
    Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, New York, USAGoogle Scholar
  28. 28.
    Miziolek AW, Palleschi V, Schechter I (eds) (2006) Laser Induced Breakdown Spectroscopy (LIBS): fundamentals and applications. Cambridge University Press, Cambridge, UKGoogle Scholar
  29. 29.
    Brech F, Cross L (1962) Optical microemission stimulated by a ruby maser. Appl Spectrosc 16:59Google Scholar
  30. 30.
    Runge ER, Minck RW, Bryan FR (1964) Spectrochemical analysis using a pulsed laser source. Spectrochim Acta 20:733–736CrossRefGoogle Scholar
  31. 31.
    Majidi V, Joseph MR (1992) Spectroscopic applications of laser-induced plasmas. Crit Rev Anal Chem 23:143–162Google Scholar
  32. 32.
    Lee WB, Yu JY, Sneddon J (2004) Recent applications of laser-induced breakdown spectrometry: a review of material approaches. Appl Spectrosc Rev 39:27–97CrossRefGoogle Scholar
  33. 33.
    Niemax K (2001) Laser ablation – reflections on a very complex technique for solid sampling. Fresenius J Anal Chem 370:332–340PubMedCrossRefGoogle Scholar
  34. 34.
    Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl Spectrosc 53:960–964CrossRefGoogle Scholar
  35. 35.
    Sabsabi M, Detalle V, Harith MA, Tawfik W, Imam H (2003) Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy. Appl Optics 42:6094–6098ADSGoogle Scholar
  36. 36.
    Menut D, Fischet P, Lacour J-L, Riviallan A, Mauchien P (2003) Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples. Appl Optics 42:6063–6071ADSGoogle Scholar
  37. 37.
    Anzano JM, Villoria MA, Gornushkin IB, Smith BW, Winefordner JD (2002) Laser-induced plasma spectroscopy for characterization of archaeological material. Can J Anal Sci Spectrosc 47:134–140Google Scholar
  38. 38.
    Cremers DA, Barefield JE, Koskelo AC (1995) Remote elemental analysis by laser-induced breakdown spectroscopy using a fiberoptic cable. Appl Spec 49:857–860CrossRefADSGoogle Scholar
  39. 39.
    Marquardt BJ, Goode SR, Angel SM (1996) In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe. Anal Chem 68:977–981CrossRefGoogle Scholar
  40. 40.
    Melessanaki K, Mastrogiannidou A, Fotakis C, Anglos D (30 September – 3 October 2003) A flexible fiber-optic LIBS probe for cultural heritage analysis. Poster presentation, 2nd Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy (EMSLIBS II), Heraklion, GreeceGoogle Scholar
  41. 41.
    Palanco S, Laserna JJ (2004) Design considerations, development and performance of a remote sensing instrument based on open-path atomic emission spectrometry. Rev Sci Inst 75:2068–2074CrossRefADSGoogle Scholar
  42. 42.
    Gronlund R, Lundqvist M, Svanberg S (2005) Remote imaging laser-induced breakdown spectroscopy and remote cultural heritage ablative cleaning. Optics Lett 30:2882–2884CrossRefADSGoogle Scholar
  43. 43.
    Tzortzakis S, Gray D, Anglos D (2006) Femtosecond laser filaments enable remote LIBS analysis with potential applications in the monitoring of sculpture and monuments. Optics Lett 31:1139–1141CrossRefADSGoogle Scholar
  44. 44.
    Stratis DN, Eland KE, Angel SM (2000) Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission. Appl Spectrosc 54:1270–1274CrossRefADSGoogle Scholar
  45. 45.
    Noll R, Sattmann R, Sturm V, Winkelmann S (2004) Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples. J Anal Atom Spectrom 19:419–428CrossRefGoogle Scholar
  46. 46.
    De Giacomo A, Dell’Aglio M, Colao F, Fantoni R (2004) Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach. Spectrochim Acta B 59:1431–1438CrossRefGoogle Scholar
  47. 47.
    Lazic V, Colao F, Fantoni R, Spizzichino V (2005) Recognition of archeological materials underwater by laser induced breakdown spectroscopy. Spectrochim Acta B 60:1014–1024CrossRefGoogle Scholar
  48. 48.
    De Giacomo A, Dell’Aglio M, Casavola A, Colonna G, De Pascale O, Capitelli M (2006) Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy. Anal Bioanal Chem 385:303–311PubMedCrossRefGoogle Scholar
  49. 49.
    Martin M, Castillejo M, Torres R, Silva D (1999) Analytical studies of polychromes by time-integrated laser-induced breakdown spectroscopy. Laser Chem 18:155–165Google Scholar
  50. 50.
    Giakoumaki A, Osticioli I, Anglos D (2006) Spectroscopic analysis using a hybrid LIBS-Raman system. Appl Phys A 83:537–541CrossRefADSGoogle Scholar
  51. 51.
    Vandenabeele P, Weis TL, Grant ER, Moens LJ (2004) A new instrument adapted to in situ Raman analysis of objects of art. Anal Bioanal Chem 379:137–142PubMedCrossRefGoogle Scholar
  52. 52.
    Cunat J, Palanco S, Carrasco F, Simon MD, Laserna JJ (2005) Portable instrument and analytical method using laser-induced breakdown spectrometry for in situ characterization of speleothems in karstic caves. J Anal Atom Spectrom 20:295–300CrossRefGoogle Scholar
  53. 53.
    Melessanaki K, Mastrogiannidou A, Chlouveraki S, Ferrence SC, Betancourt PP, Anglos D (2005) Analysis of archaeological objects with LMNTI, a new transportable LIBS instrument. In: Dickmann Ê, Fotakis C, Asmus JF (eds) Proceedings, 5th International Conference Lasers in the Conservation of Artworks in Lasers in the Conservation of Artworks, LACONA V Proceedings, Osnabrueck, Germany, Sept. 15–18, 2003, Springer Proceedings in Physics vol 100, pp 443–451Google Scholar
  54. 54.
    Roy A (1979) The laser microspectral analysis of paint. Natl Gallery Tech Bull 3:43–50Google Scholar
  55. 55.
    Burgio L, Clark RJH, Stratoudaki T, Doulgeridis M, Anglos D (2000) Pigment Identification. A dual analytical approach employing Laser Induced Breakdown Spectroscopy (LIBS) and raman microscopy. Appl Spectrosc 54:463–469CrossRefADSGoogle Scholar
  56. 56.
    Bicchieri M, Nardone M, Russo PA, Sodo A, Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) Characterization of azurite and lazurite by laser induced breakdown spectroscopy and Raman microscopy. Spectrochim Acta B 56:915–922CrossRefGoogle Scholar
  57. 57.
    Burgio L, Melessanaki K, Doulgeridis M, Clark RJH, Anglos D (2001) Pigment identification in paintings employing Laser Induced Breakdown Spectroscopy (LIBS) and Raman microscopy. Spectrochim Acta B 56:905–913CrossRefGoogle Scholar
  58. 58.
    Castillejo M, Martin M, Oujja M, Silva D, Torres R, Domingo C, Garcia-Ramos JV, Sanchez-Cortes S (2001) Spectroscopic analysis of pigments and binding media of polychromes by the combination of optical laser-based and vibrational techniques. Appl Spectrosc 55:992–998CrossRefADSGoogle Scholar
  59. 59.
    Lazic V, Colao F, Fantoni R, Palucci A, Spizzichino V, Borgia I, Brunetti BG, Sgamellotti A (2003) Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy. J Cult Heritage 4:303s–308sCrossRefGoogle Scholar
  60. 60.
    Melessanaki K, Papadakis V, Balas C, Anglos D (2001) Laser induced breakdown spectroscopy (LIBS) and hyper-spectral imaging analysis of pigments on illuminated manuscripts. Spectrochim Acta B 56:2337–2346CrossRefGoogle Scholar
  61. 61.
    Fortes FJ, Cortes M, Simon MD, Cabalin LM, Laserna JJ (2005) Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry. Anal Chim Acta 554:136–143Google Scholar
  62. 62.
    Bolognesi L, Corsi M, Palleschi V, Salvetti A, Squarcialupi MC, Tognoni E (1999) Calibration-free laser induced plasma spectroscopy for cultural heritage conservation and analysis. In: Proceedings 2nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean basin, Elsevier, Paris, pp 431–436Google Scholar
  63. 63.
    Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) A fast and accurate method for the determination of precious alloys caratage by laser induced plasma spectroscopy. Eur Phys J D 13:373–377CrossRefADSGoogle Scholar
  64. 64.
    Jurado-Lopez A, Luque de Castro MD (2003) Chemometric approach to laser-induced breakdown analysis of gold alloys. Appl Spectrosc 57:349–352PubMedCrossRefGoogle Scholar
  65. 65.
    Colao F, Fantoni R, Lazic V, Caneve L, Giardini A, Spizzichino V (2004) LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results. J Anal Atom Spectrom 19:502–504CrossRefGoogle Scholar
  66. 66.
    Acquaviva S, De Giorgi ML, Marini C, Poso R (2004) Elemental analyses by laser induced breakdown spectroscopy as restoration test on a piece of ordnance. J Cult Heritage 5:365–369CrossRefGoogle Scholar
  67. 67.
    Lopez AJ, Nicolas G, Mateo MP, Ramil A, Pinon V, Yanez A (2006) LIPS and linear correlation analysis applied to the classification of Roman pottery Terra Sigillata. Appl Phys A 83:695–698CrossRefADSGoogle Scholar
  68. 68.
    Lopez AJ, Nicolas G, Mateo MP, Pinon V, Tobar MJ, Ramil A (2005) Compositional analysis of Hispanic Terra Sigillata by laser-induced breakdown spectroscopy. Spectrochim Acta B 60:1149–1154CrossRefGoogle Scholar
  69. 69.
    Anzano J, Gutierrez J, Villoria M (2005) Direct determination of aluminum in archaeological clays by laser-induced breakdown spectroscopy. Anal Lett 38:1957–1965CrossRefGoogle Scholar
  70. 70.
    Yoon Y, Kim T, Yang M, Lee K, Lee G (2001) Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy. Microchem J 68:251–256CrossRefGoogle Scholar
  71. 71.
    Lazic V, Fantoni R, Colao F, Santagata A, Morona A, Spizzichino V (2004) Quantitative laser-induced breakdown spectroscopy analysis of ancient marbles and corrections for the variability of plasma parameters and of ablation rate. J Anal Atom Spectrom 19:429–436CrossRefGoogle Scholar
  72. 72.
    Gobernado-Mitre I, Prieto AC, Zafiropulos V, Spetsidou Y, Fotakis C (1997) On-line monitoring of laser cleaning of limestone by laser induced breakdown spectroscopy. Appl Spectrosc 51:1125–1129CrossRefADSGoogle Scholar
  73. 73.
    Maravelaki PV, Zafiropulos V, Kylikoglou V, Kalaitzaki M, Fotakis C (1997) Laser induced breakdown spectroscopy as a diagnostic technique for the laser cleaning of marble. Spectrochim Acta B 52:41–53CrossRefGoogle Scholar
  74. 74.
    Klein S, Stratoudaki T, Zafiropulos V, Hildenhagen J, Dickmann K, Lehmkuhl Th (1999) Laser-induced breakdown spectroscopy for on-line control of laser cleaning of sandstone and stained glass. Appl Phys A 69:441–444CrossRefADSGoogle Scholar
  75. 75.
    Maravelaki-Kalaitzaki PV, Anglos D, Kylikoglou V, Zafiropulos V (2001) Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim Acta B 56:887–903CrossRefGoogle Scholar
  76. 76.
    Vadillo JM, Laserna JJ (1996) Laser-induced breakdown spectroscopy of silicate, vanadate and sulfide rocks. Talanta 43:1149–1154CrossRefGoogle Scholar
  77. 77.
    Harmon RS, DeLucia FC, McManus CE, McMillan NJ, Jenkins TF, Walsh ME, Miziolek A (2006) Laser-induced breakdown spectroscopy - An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl Geochem 21:730–747CrossRefGoogle Scholar
  78. 78.
    Carmona N, Oujja M, Rebollar E, Romich H, Castillejo M (2005) Analysis of corroded glasses by laser induced breakdown spectroscopy. Spectrochim Acta B 60:1155–1162CrossRefGoogle Scholar
  79. 79.
    Melessanaki K, Panagiotaki M, Chlouveraki S, Betancourt PP, Anglos D (24–28 September 2002) Analysis of Bronze Age vitreous materials. Experience with a new LIBS instrument, Poster presentation in the International Conference “Laser Induced Breakdown Spectroscopy 2002” Orlando, USAGoogle Scholar
  80. 80.
    Brysbaert A, Melessanaki K, Anglos D (2006) Pigment analysis in Bronze age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS). J Archaeol Sci 33:1095–1104CrossRefGoogle Scholar
  81. 81.
    Samek O, Beddows DCS, Telle HH, Kaiser J, Liska M, Caseres JO, Gonzales Urena A (2001) Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochim Acta B 56:865–875CrossRefGoogle Scholar
  82. 82.
    Suliyanti MM, Sardy S, Kusnowo A, Pardede M, Hedwig R, Kurniawan KH, Lie TJ, Kurniawan DP, Kagawa K (2005) Preliminary analysis of C and H in a “Sangiran” fossil using laser-induced plasma at reduced pressure. J Appl Phys 98:093307CrossRefGoogle Scholar
  83. 83.
    Lie TJ, Kurniawan KH, Kurniawan DP, Pardede M, Suliyanti MM, Khumaeni A, Natiq SA, Abdulmadjid SN, Lee YI, Kagawa K, Idris N, Tjia MO (2006) Elemental analysis of bead samples using a laser-induced plasma at low pressure. Spectrochim Acta B 61:104–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Anastasia Giakoumaki
    • 1
    • 2
  • Kristalia Melessanaki
    • 1
  • Demetrios Anglos
    • 1
  1. 1.Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH)HeraklionGreece
  2. 2.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece

Personalised recommendations