Early oriented isothermal crystallization of polyethylene studied by high-time-resolution SAXS/WAXS

  • N. Stribeck
  • A. Almendarez Camarillo
  • U. Nöchel
  • P. Bösecke
  • R. K. Bayer
Original Paper


During cooling from the quiescent melt of a highly oriented polyethylene rod, highly oriented proto-lamellae are formed first, which are not crystalline. This is shown in scattering data which are recorded on two-dimensional detectors with a cycle time of 1 s and an exposure of 0.1 s. In the experiments small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) are registered simultaneously during the first 3 min after quenching to a crystallization temperature. A non-uniform thickness between 20 and 100 nm is characteristic for the ensemble of proto-lamellae. During the first minute of isothermal treatment the number of proto-lamellae slowly increases without a change of the thickness distribution. As crystallization starts, the crystallites are not oriented in contrast to the proto-lamellae. During crystallization the layer thickness distribution narrows. The number of lamellae rapidly increases during the following 2 min of isothermal treatment (at 128 °C and 124 °C). The results are obtained by interpretation of the WAXS and of the multidimensional chord distribution function (CDF), a model-free real-space visualization of the nanostructure information contained in the SAXS data.


SAXS Polyethylene Crystallization 



We acknowledge the support of Dipl. Ing. F. Tschöpe concerning the high-pressure injection-molding and the European Synchrotron Radiation Facility (ESRF), Grenoble, France for provision of the synchrotron radiation facilities at beamline ID02 in the frame of project SC-1679. Financial support of this study by the Deutsche Forschungsgemeinschaft (DFG STR501/4-1) is gratefully acknowledged.


  1. 1.
    Wang W, Ruland W, Cohen Y (1993) Acta Polym 44:273CrossRefGoogle Scholar
  2. 2.
    Allegra G, Meille SV (1999) Phys Chem Chem Phys 1:5179CrossRefGoogle Scholar
  3. 3.
    Heck B, Hugel T, Iijima M, Sadiku E, Strobl G (1999) New J Phys 1:17.1Google Scholar
  4. 4.
    Wang ZG, Hsiao BS, Sirota EB, Srinivas S (2000) Polymer 41:8825CrossRefGoogle Scholar
  5. 5.
    Dreezen G, Ivanov DA, Nysten B, Groeninckx G (2000) Polymer 41:1395CrossRefGoogle Scholar
  6. 6.
    Heck B, Hugel T, Iijima M, Strobl G (2000) Polymer 41:8839CrossRefGoogle Scholar
  7. 7.
    Somani RH, Yang L, Hsiao BS, Agarwal PK, Fruitwala HA, Tsou AH (2002) Macromolecules 35:9096CrossRefGoogle Scholar
  8. 8.
    Heeley EL, Maidens AV, Olmsted PD, Bras W, Dolbnya IP, Fairclough JPA, Terrill NJ, Ryan AJ (2003) Macromolecules 36:3656CrossRefGoogle Scholar
  9. 9.
    Bras W, Dolbnya I, Detollenaere D, van Tol R, Malfois M, Greaves G, Ryan A, Heeley E (2003) J Appl Cryst 36:791CrossRefGoogle Scholar
  10. 10.
    Somani RH, Yang L, Hsiao BH, Fruitwala H (2003) J Macromol Sci Part B Phys B42:515CrossRefGoogle Scholar
  11. 11.
    Yamazaki S, Hikosaka M, Toda A, Wataoka I, Yamada K, Tagashira K (2003) J Macromol Sci Part B Physics B42:499CrossRefGoogle Scholar
  12. 12.
    Ania F, Flores A, Baltá Calleja FJ (2003) J Macromol Sci Part B Phys 42:653CrossRefGoogle Scholar
  13. 13.
    Panine P, Urban V, Bösecke P, Narayanan T (2003) J Appl Cryst 36:991CrossRefGoogle Scholar
  14. 14.
    Stribeck N (1993) Colloid Polym Sci 271:1007CrossRefGoogle Scholar
  15. 15.
    Stribeck N (2000) ACS Symp Ser 739:41CrossRefGoogle Scholar
  16. 16.
    Stribeck N (2001) J Appl Cryst 34:496CrossRefGoogle Scholar
  17. 17.
    Stribeck N (2002) Colloid Polym Sci 280:254CrossRefGoogle Scholar
  18. 18.
    Stribeck N (2006) J Appl Cryst 39:237CrossRefGoogle Scholar
  19. 19.
    Stribeck N, Almendarez Camarillo A, Cunis S, Bayer RK, Gehrke R (2004) Macromol Chem Phys 205:1445CrossRefGoogle Scholar
  20. 20.
    Stribeck N (2004) Macromol Chem Phys 205:1455CrossRefGoogle Scholar
  21. 21.
    Stribeck N, Almendarez Camarillo A, Bayer R (2004) Macromol Chem Phys 205:1463CrossRefGoogle Scholar
  22. 22.
    Stribeck N, Bayer R, Bösecke P, Almendarez Camarillo A (2005) Polymer 46:2579CrossRefGoogle Scholar
  23. 23.
    Stribeck N, Bösecke P, Bayer R, Almendarez Camarillo A (2005) Progr Coll Polym Sci 130:127Google Scholar
  24. 24.
    Ania F, Rueda DR, Calleja FJB, Krosigk GV (2000) J Mater Sci 35:5199CrossRefGoogle Scholar
  25. 25.
    Stribeck N, Bayer R, von Krosigk G, Gehrke R (2002) Polymer 43:3779CrossRefGoogle Scholar
  26. 26.
    Narayanan T, Diat O, Bösecke P (2001) Nucl Instrum Methods Phys Res Sect A 467–468:1005CrossRefGoogle Scholar
  27. 27.
    Bösecke P, Diat O (1997) J Appl Cryst 30:867CrossRefGoogle Scholar
  28. 28.
    Urban V, Panine P, Ponchut C, Bösecke P, Narayanan T (2001) J Appl Cryst 36:809CrossRefGoogle Scholar
  29. 29.
    VNI, pv-wave manuals. V 7.5 (2001), Boulder, ColoradoGoogle Scholar
  30. 30.
  31. 31.
    Buhmann MD (2000) Acta Numerica 9:1CrossRefGoogle Scholar
  32. 32.
    Stribeck N (2003) Anal Bioanal Chem 376:608CrossRefGoogle Scholar
  33. 33.
    Stribeck N, Buzdugan E, Ghioca P, Serban S, Gehrke R (2002) Macromol Chem Phys 203:636CrossRefGoogle Scholar
  34. 34.
    Stribeck N (2003) Fibr Text EE 11:33Google Scholar
  35. 35.
    Stribeck N, Androsch R, Funari SS (2003) Macromol Chem Phys 204:1202CrossRefGoogle Scholar
  36. 36.
    Stribeck N, Fakirov S, Apostolov AA, Denchev Z, Gehrke R (2003) Macromol Chem Phys 204:1000CrossRefGoogle Scholar
  37. 37.
    Stribeck N, Funari SS (2003) J Polym Sci Part B Polym Phys 41:1947CrossRefGoogle Scholar
  38. 38.
    Stribeck N, Almendarez Camarillo A, Nöchel U, Schroer C, Kuhlmann M, Roth SV, Gehrke R, Bayer RK (2006) Macromol Chem Phys 207:1239CrossRefGoogle Scholar
  39. 39.
    Stribeck N, Fakirov S (2001) Macromolecules 34:7758CrossRefGoogle Scholar
  40. 40.
    Vonk CG (1979) Colloid Polym Sci 257:1021CrossRefGoogle Scholar
  41. 41.
    Ruland W (1977) Colloid Polym Sci 255:417CrossRefGoogle Scholar
  42. 42.
    Ruland W (1978) Colloid Polym Sci 256:932CrossRefGoogle Scholar
  43. 43.
    Bonart R (1966) Kolloid Z u Z Polymere 211:14CrossRefGoogle Scholar
  44. 44.
    Fischer EW (1969) Colloid Polym Sci 231:458Google Scholar
  45. 45.
    Vonk CG, Kortleve G (1967) Colloid Polym Sci 220:19Google Scholar
  46. 46.
    Strobl GR, Schneider M (1980) J Polym Sci Part B Polym Phys B18:1343Google Scholar
  47. 47.
    Schmidt PW, Brill LO (1967) In: Rowell RR, Stein RS (eds), Electromagnetic scattering. Proceedings of ICES 2, Amherst, MA, June 1965, pp 169–186, Gordon & Breach, New YorkGoogle Scholar
  48. 48.
    Rényi A (1958) Publ Math Inst Budapest 3:109Google Scholar
  49. 49.
    Rényi A (1963) Sel Transl Math Stat Prob 4:203Google Scholar
  50. 50.
    Burgos E, Bonadeo H (1987) J Phys A 20:1193CrossRefGoogle Scholar
  51. 51.
    Bonnier B, Boyer D, Viot P (1994) J Phys A 27:3671CrossRefGoogle Scholar
  52. 52.
    Ghioca P, Buzdugan E, Stribeck N, Serban S, Stancu R, Cherchez I, Stinga F (1998) Mater Plast 35:82Google Scholar
  53. 53.
    Almendarez Camarillo A, Roth SV, Bösecke P, Buchner S, Krenn K, Gehrke R, Stribeck N (2006) J Mater Sci (in press)Google Scholar
  54. 54.
    Wang J, Alvarez M, Zhang W, Wu Z, Li Y, Chu B (1992) Macromolecules 25:6943CrossRefGoogle Scholar
  55. 55.
    Hsiao BS, Gardner KH, Wu DQ, Chu B (1993) Polymer 34:3996CrossRefGoogle Scholar
  56. 56.
    Hugel T, Strobl G, Thomann R (1999) Acta Polym 50:214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • N. Stribeck
    • 1
  • A. Almendarez Camarillo
    • 1
  • U. Nöchel
    • 1
  • P. Bösecke
    • 2
  • R. K. Bayer
    • 3
  1. 1.Institute of Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany
  2. 2.ESRFGrenoble Cedex 9France
  3. 3.Institut für WerkstofftechnikUniversität GH KasselKasselGermany

Personalised recommendations