Advertisement

Analytical and Bioanalytical Chemistry

, Volume 387, Issue 1, pp 351–357 | Cite as

Application of an in-line imprinted polymer column in a potentiometric flow-injection chemical sensor to the determination of the carbamate pesticide carbaryl in complex biological matrices

  • Jamil HantashEmail author
  • Alan Bartlett
  • Philip Oldfield
  • Georges Dénès
  • Roger O’Rielly
  • Francois David
Original Paper

Abstract

A flow-injection biosensor-like system based on a nonenzymatic approach has been developed to determine the carbamate pesticide carbaryl in complex biological samples without lengthy and expensive extraction steps. Molecularly imprinted polymeric beads were used to immobilize carbaryl from biological samples. pH variation permitted the elution of carbaryl from the binding cavity to the flow cell. A pH electrode was used to detect changes in the charge of carbaryl in the sample solution resulting from the protonation and deprotonation of the molecule over different pH ranges. At pH 2.0, the secondary amine group is protonated, giving a (+1) charge to the carbaryl molecule. At pH 8.0, the ionized carbaryl loses a proton to become neutral, changing the local pH of the flow cell. The pH change at the flow cell generated by the deprotonation of carbaryl ion in alkaline medium was used to determine the carbaryl concentration. Parameters influencing the performance of the system were optimized for use in the detection procedure. The validated biosensor-like system had a carbaryl detection limit of 10.0 μg/mL and a response that was linear (r 2 > 0.98) over the concentration range of 10.0–00 μg/mL.

Keywords

Pesticides Potentiometric Flow injection Biosensor-like Molecularly imprinted polymer Suspension polymerization Detection 

Notes

Acknowledgement

This work was made possible by the support of Charles River Laboratories Preclinical Services Montreal, Inc. (CRM) and Concordia University.

References

  1. 1.
    Baron RL (1991) In: Hayes WH Jr, Laws ER Jr (eds) Handbook of pesticide toxicology. Academic, San Diego, CA, 3:1125–1189Google Scholar
  2. 2.
    Farage-Elawar M, Blaker WD (1992) J Appl Toxicol 12:421CrossRefGoogle Scholar
  3. 3.
    Casale GP, Vennerstrom JL, Bavari S, Wang TL (1993) Immunopharmacol Immunotoxicol 15:199Google Scholar
  4. 4.
    US Department of Health and Human Services (1992) Hazardous substances databank (HSDB): entry for carbaryl. National Toxicology Information Program, National Library of Medicine, Bethesda, MD (available online at http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~SdbQGC:1, last accessed 25th October 2006)
  5. 5.
    Mimmo DR, McEwen LC (1994) Pesticides. In: Calow P (ed) Handbook of ecotoxicology, vol 2. Blackwell, Oxford, pp 155–203Google Scholar
  6. 6.
    Jing H, Amirav A (1997) Anal Chem 69:1426–1435CrossRefGoogle Scholar
  7. 7.
    Nunes S, Skladal P, Yamanka H, Barcelo D (1998) Anal Chim Acta 362:59–68CrossRefGoogle Scholar
  8. 8.
    Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR (2001) Biosens Bioelectron 16:225–230CrossRefGoogle Scholar
  9. 9.
    Rekha K, Thakur MS, Karanth NG (2000) Crit Rev Biotechnol 20(3):213–235Google Scholar
  10. 10.
    Suri CR, Raje M, Varshney GC (2002) Crit Rev Biotechnol 22(1):15–32CrossRefGoogle Scholar
  11. 11.
    Trojanowicz M (2002) Electroanalysis 14(19/20):1311–1328CrossRefGoogle Scholar
  12. 12.
    Jungbluth F (1996) Crop protection policy in Thailand: economic and political factors influencing pesticide use (Pesticide Policy Project Publ Ser No 5). GTZ/University of Hannover, HannoverGoogle Scholar
  13. 13.
    Thanpinta A, Hudak PF (2000) Environ Monit Assess 60:103–114CrossRefGoogle Scholar
  14. 14.
    Mayes AG, Mosback K (1996) Anal Chem 68:3769–3774CrossRefGoogle Scholar
  15. 15.
    US FDA (2001) Guidance for industry—bioanalytical method validation. US Food and Drug Administration, Rockville, MDGoogle Scholar
  16. 16.
    Hantash J, Bartlett A, Oldfield P, Dénès G, O’Rielly R, Roudiere D, Menduni S (2006) J Chromatogr A 1125:104–111CrossRefGoogle Scholar
  17. 17.
    Andrsson LI (2001) Bioseperation 10(6):353–364CrossRefGoogle Scholar
  18. 18.
    Kandimalla VB, Ju HX (2004) Anal Bioanal Chem 380(4):587–605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jamil Hantash
    • 1
    • 2
    Email author
  • Alan Bartlett
    • 1
  • Philip Oldfield
    • 1
  • Georges Dénès
    • 2
  • Roger O’Rielly
    • 1
  • Francois David
    • 1
  1. 1.Charles River Laboratories Preclinical Services Montreal, Inc.SennevilleCanada
  2. 2.Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, Department of Chemistry and BiochemistryConcordia UniversityMontréalCanada

Personalised recommendations