Analytical and Bioanalytical Chemistry

, Volume 387, Issue 2, pp 673–685

Application of matrix solid-phase dispersion and liquid chromatography–mass spectrometry to fungicide residue analysis in fruits and vegetables

  • Suli Wang
  • Yanjun Xu
  • Canping Pan
  • Shuren Jiang
  • Fengmao Liu
Original Paper

Abstract

A method based on matrix solid-phase dispersion (MSPD) and liquid chromatography–electrospay ionization–mass spectrometry used to analyze fifteen fungicide residues in fruits and vegetables is described. The method required only 0.5 g of sample, C18-bonded silica was used as dispersant sorbent, and ethyl acetate was used as eluting solvent. Fortified recoveries in apple, orange, banana, lettuce, grape and tomato samples ranged from 71% to 102% and relative standard deviations were less than 13% with fortified levels of 0.03–1.5 mg kg−1. Detection and quantification limits were 1~30 μg kg−1 and 4~100 μg kg−1, respectively, with linear calibration curves extending up to 15 mg kg−1. The analytical characteristics of MSPD compared very favorably with those found for a classical multiresidue method: the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. The method was applied to determine the fungicides in real samples. Liquid chromatography–tandem mass spectrometry (LC–MS–MS) was used as confirmatory tool for positive samples.

Keywords

Fruits and vegetables Fungicide residues Matrix solid-phase dispersion (MSPD) Liquid chromatography–mass spectrometry (LC–MS) 

References

  1. 1.
    Bright FV, McNally MEP (1992) Supercritical fluid technology: theroretical and applied approaches to analytical chemistry (ACS Symp Ser 488). American Chemical Society, Washington, DCGoogle Scholar
  2. 2.
    Ortelli D, Eedder P, Corvi C (2005) Food Addit Contam 22(5):423–428CrossRefGoogle Scholar
  3. 3.
    Attilio V, Givanni V, Swizly SA, Francesco SA, Luca RDS (2004) Food Chem 87(3):383–3865CrossRefGoogle Scholar
  4. 4.
    Torres CM, Picó Y, Maries J (1996) J Chromatogr A 754:301–331CrossRefGoogle Scholar
  5. 5.
    Blasco C, Font G, Picó Y (2006) Food Control 17:841–846CrossRefGoogle Scholar
  6. 6.
    Zamora T, Pozo OJ, López FJ, Hernández F (2004) J Chromatogr A 1045:137–143CrossRefGoogle Scholar
  7. 7.
    Fernandez M, Rodríguez R, Picó Y, Manes J (2001) J Chromatogr A 912:301–310CrossRefGoogle Scholar
  8. 8.
    Rodríguez R, Picó Y, Font G, Manes J (2002) J Chromatogr A 949:359–366CrossRefGoogle Scholar
  9. 9.
    Rodríguez R, Picó Y, Font G, Manes J (2002) J Chromatogr A 924:387–396CrossRefGoogle Scholar
  10. 10.
    Rodríguez R, Picó Y, Font G (2002) J Chromatogr A 949:359–366CrossRefGoogle Scholar
  11. 11.
    Hu RW, Hennion B, Urruty L, Montury M (1999) Food Addit Contam 16:111–116CrossRefGoogle Scholar
  12. 12.
    Navarro M, Picó Y, Marin R, Manes J (2002) J Chromatog A 968:201–209CrossRefGoogle Scholar
  13. 13.
    Blasco C, Picó Y, Font G, Manes J (2002) J Chromatogr A 984:227–235CrossRefGoogle Scholar
  14. 14.
    Barker SA (2000) J Chromatogr A 880:2443–2448CrossRefGoogle Scholar
  15. 15.
    Fernandez M, Picó Y, Manes J (2000) J Chromatogr A 871:43–49CrossRefGoogle Scholar
  16. 16.
    Blasco C, Picó Y, Manes J, Font G (2002) J Chromatogr A 947:227–234CrossRefGoogle Scholar
  17. 17.
    Naoki Y, Yumi A, Kiyoshi T (2004) J Chromatogr A 1022:145–150CrossRefGoogle Scholar
  18. 18.
    Reemtsma T (2001) Trends Anal Chem 20:500–505CrossRefGoogle Scholar
  19. 19.
    Lacassie EM, Dreyfuss F, Daguet JL, Vignaud M, Marquet P, Lachatre G (1999) J Chromatogr A 830:135–141CrossRefGoogle Scholar
  20. 20.
    Soler C, Manes J, Picó Y (2004) J Chromatogr A 1048:41–49CrossRefGoogle Scholar
  21. 21.
    Aguera A, Lopez S, Fernandez-Alba AR, Contreras M, Crespo J, Piedra L (2004) J Chromatogr A 1045:125–132CrossRefGoogle Scholar
  22. 22.
    Hetherton CL, Sykes MD, Fusell RJ, Goodall DM (2004) Rapid Commun Mass Spectrom 18:2443–2449CrossRefGoogle Scholar
  23. 23.
    Rodríguez R, Picó Y, Font G, Manes J (2001) J Chromatogr A 924:387–396CrossRefGoogle Scholar
  24. 24.
    Navarro M, Picó Y, Marin R, Manes J (2003) J Chromatogr A 908:201–209Google Scholar
  25. 25.
    Steven JL, Andrede K, Maurice H, Petervan B (2005) J AOAC Int 88:595–629Google Scholar
  26. 26.
    Dicorcia A, Creszenci C, Lagana A, Sebastiani E (1996) J Agric Food Chem 44:1930–1936CrossRefGoogle Scholar
  27. 27.
    Trosken ER, Bittner N, Volker W (2005) J Chromatogr A 1083:113–119CrossRefGoogle Scholar
  28. 28.
    Mallat E, Barcelo D, Tauler R (1997) Chromatographia 46:342–349CrossRefGoogle Scholar
  29. 29.
    Fernandez M, Rodríguez R, Picó Y, Manes J (2001) J Chromatogr A 912:301–310CrossRefGoogle Scholar
  30. 30.
    Lacassie E, Dreyfuss MF, Daguet JL, Vignaud M, Marquet P, Lachatre G (1999) J Chromatogr A 830:135–144CrossRefGoogle Scholar
  31. 31.
    Steven J, Lehotay KM, Seon J (2005) J AOAC Int 88(2):630–638Google Scholar
  32. 32.
    Kristenson EM, Ramos L, Brinkman UAT (2006) Trends Anal Chem 25:96–111CrossRefGoogle Scholar
  33. 33.
    Klein J, Alder L (2003) J AOAC Int 86:1015–1021Google Scholar
  34. 34.
    Zrostlikova J, Hajslova J, Kovalczuk T, Stipan R, Poustka J (2003) J AOAC Int 86:612–620Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Suli Wang
    • 1
    • 2
  • Yanjun Xu
    • 1
  • Canping Pan
    • 1
  • Shuren Jiang
    • 1
  • Fengmao Liu
    • 1
  1. 1.College of ScienceChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.Hebei North UniversityZhangjiakouPeople’s Republic of China

Personalised recommendations