Analytical and Bioanalytical Chemistry

, Volume 387, Issue 5, pp 1779–1789 | Cite as

A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions

  • Adriana Szeghalmi
  • Susan Kaminskyj
  • Kathleen M. Gough
Original Paper


Synchrotron FTIR can provide high spatial resolution (<10 μm pixel size) in situ biochemical analyses of intact biotissues, an area of increasing importance in the post-genomic era, as gene functions and gene networks are coming under direct scrutiny. With this technique, we can simultaneously assess multiple aspects of cell biochemistry and cytoplasmic composition. In this paper, we report the first results of our synchrotron FTIR examination of hyphae of three important fungal model systems, each with sequenced genomes and a wealth of research: Aspergillus, Neurospora, and Rhizopus. We have analyzed the FTIR maps of Aspergillus nidulans cells containing the hypA1 allele, a well-characterized single-gene temperature-sensitive morphogenetic mutation. The hypA1 cells resemble wildtype at 28 °C but have growth defects at 42 °C. We have also investigated Neurospora and Rhizopus cultures grown in media with optimal or elevated pH. Significant differences between the spectra of the three fungi are likely related to differences in composition and structure. In addition, high spatial resolution synchrotron FTIR spectroscopy provides an outstanding method for monitoring subtle subcellular changes that accompany environmental stress.


Photomicrographs and FTIR spectra acquired along Rhizopus hyphae grown at pH 6.5 (a) and pH 8.5 (b). Scale bars 50 μm


Synchrotron FTIR spectromicroscopy Aspergillus nidulans Neurospora Rhizopus Fungal tip growth under stress 



The authors are grateful to A. Digby, B. Yakiwchuk, M. Rak, and M. Gallant (U. Manitoba) for assistance in data collection. Funding was provided by grants to KMG and SK from NSERC Canada. AZ is supported by a CIHR Strategic Training post-doctoral fellowship. The research described in this paper was performed at the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan; The National Synchrotron Light Source (NSLS, Brookhaven National Laboratories, NY); and the Synchrotron Radiation Centre (SRC, University of Wisconsin at Madison). The SRC is funded by NSF (Award No.DMR-08442). The authors are grateful to T. May and C. Hyatt (CLS), Dr. R. Julian (SRC) and Drs. L. Miller and R. Smith (NSLS) for technical assistance.


  1. 1.
    Heath IB (ed) (1990) Tip growth in plant and fungal cells. Academic Press, TorontoGoogle Scholar
  2. 2.
    Gow NAR, Gadd GM (eds) (1995) The growing fungus. Chapman and Hall, LondonGoogle Scholar
  3. 3.
    Heath IB, Kaminskyj S (1989) J Cell Science 93:41–52Google Scholar
  4. 4.
    Kaminskyj S, Heath IB (1996) Mycologia 88:20–37Google Scholar
  5. 5.
    Michell AJ, Scurfield G (1970) Aust J Biol Sci 23:345–360Google Scholar
  6. 6.
    Sandula J, Kogan G, Kakurakova M, Machova E (1999) Carbohydr Polym 38:247–253CrossRefGoogle Scholar
  7. 7.
    Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) Carbohydr Polym 43:195–203CrossRefGoogle Scholar
  8. 8.
    Bahmed K, Quiles F, Bonaly R, Coulon J (2003) Biomacromolecules 4:1763–1772CrossRefGoogle Scholar
  9. 9.
    Wang Y, Zhang M, Ruan D, Shashkov AS, Kilcoyne M, Savage AV, Zhang L (2004) Carbohydr Res 339:327–334CrossRefGoogle Scholar
  10. 10.
    Naumann D, Helm D, Labishinski H (1991) Nature 351:81–82CrossRefGoogle Scholar
  11. 11.
    Galichet A, Sockalingum GD, Belardi A, Manfait M (2001) FEMS Microbiol Lett 197:179–186CrossRefGoogle Scholar
  12. 12.
    Mohacek-Grosev V, Bozac R, Pupples GJ (2001) Spectrochim Acta A 57:2815–2829CrossRefGoogle Scholar
  13. 13.
    Essendoubi M, Toubas D, Bouzaggou M, Pinon JM, Manfait M, Sockalingum GD (2005) Biochim Biophys Acta 1724:239–247Google Scholar
  14. 14.
    Fischer G, Braun S, Thissen R, Dott W (2006) J Microbiol Methods 64:63–77CrossRefGoogle Scholar
  15. 15.
    Adt I, Toubas D, Pinon JM, Manfait M, Sockalingum GD (2006) Arch Microbiol 185:227–285CrossRefGoogle Scholar
  16. 16.
    Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcel S, Harris S, Braus GH, Draht O, Busch S, d’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sach MS, Osmani SA, Birren BW (2005) Nature 438:1105–1115CrossRefGoogle Scholar
  17. 17.
    Denning DW, Anderson MJ, Turner G, Latge JP, Bennett JW (2002) Lancet Infect Dis 2:251–253CrossRefGoogle Scholar
  18. 18.
    Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund A, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) Nature 422:859–868CrossRefGoogle Scholar
  19. 19.
    Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) Nature 434:980–986CrossRefGoogle Scholar
  20. 20.
    Kaminskyj S, Hamer J (1998) Genetics 148:669–680Google Scholar
  21. 21.
    Kaminskyj S, Boire M (2004) Can J Bot 82:807–814CrossRefGoogle Scholar
  22. 22.
    Shi X, Sha Y, Kaminskyj S (2004) Fungal Genet Biol 41:75–88CrossRefGoogle Scholar
  23. 23.
    Kaminskyj S (2001) Fungal Genetics Newsletter 48:25–31Google Scholar
  24. 24.
    Gough KM, Zelinski D, Wiens R, Rak M, Dixon IMC (2003) Anal Biochem 316:232–242CrossRefGoogle Scholar
  25. 25.
    Gough KM, Rak M, Bookatz A, Del Bigio M, Mai S, Westaway D (2005) Vib Spectrosc 38:133–141CrossRefGoogle Scholar
  26. 26.
    Hill TW, Loprete DM, Momany M, Ha Y, Harsch LM., Livesay JA, Mirchandani A, Murdock JJ, Vaughn MJ, Watt MB (2006) Mycologia 98:400–410Google Scholar
  27. 27.
    Mie G (1908) Ang Phys (Leipzig) 25:377–452Google Scholar
  28. 28.
    Mohlenhoff B, Romeo M, Diem M, Wood BR (2005) Biophys J 88:3635–3640CrossRefGoogle Scholar
  29. 29.
    Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, NYGoogle Scholar
  30. 30.
    Tan SC, Tan TK, Wong SM, Khor E (1996) Carbohydr Polym 30:239–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Adriana Szeghalmi
    • 1
  • Susan Kaminskyj
    • 2
  • Kathleen M. Gough
    • 1
  1. 1.Department of ChemistryUniversity of ManitobaWinnipegCanada
  2. 2.Department of BiologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations