Analytical and Bioanalytical Chemistry

, Volume 386, Issue 7–8, pp 2087–2094 | Cite as

Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin

Original Paper


A simple, sensitive, and reliable method based on a combination of multi-walled carbon nanotubes with incorporated β-cyclodextrin (β-CD-MWNTs) and a polyaniline (PANI) film-modified glassy-carbon (GC) electrode has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The PANI film had good anti-interference properties and long-term stability, because of the permselective and protective properties of the conducting redox polymer film. The acid-treated MWNTs with carboxylic acid functional groups promoted the electron-transfer reaction of DA and inhibited the voltammetric response of AA. Sensitive detection of DA was further improved by the preconcentration effect of formation of a supramolecular complex between β-CD and DA. The analytical response of the β-CD-MWNTs/PANI film to the electrochemical behavior of DA was, therefore, better than that of a MWNTs/PANI film, a PANI film, or a bare glassy-carbon (GC) electrode. Under the conditions chosen a linear calibration plot was obtained in the range 1.0 × 10−7–1.0 × 10−3 mol L−1 and the detection limit was 1.2 × 10−8 mol L−1. Interference from AA was effectively eliminated and the sensitivity, selectivity, stability, and reproducibility of the electrodes was excellent for determination of DA.


Dopamine β-Cyclodextrin Multi-walled carbon nanotubes Polyaniline 


  1. 1.
    Wightman R, Amatorh C, Engstrom R, Hale P, Kristensen E, Kubr W, May L (1988) Neuroscience 25:513–523CrossRefGoogle Scholar
  2. 2.
    Wightman R, May L, Michael A (1988) Anal Chem 60:769A–770AGoogle Scholar
  3. 3.
    Adams R (1976) Anal Chem 48:1128A–1137ACrossRefGoogle Scholar
  4. 4.
    Kawagoe K, Wightman R (1994) Talanta 41:865–874CrossRefGoogle Scholar
  5. 5.
    Raj C, Okajima T, Ohsaka T (2003) J Electroanal Chem 543:127–133CrossRefGoogle Scholar
  6. 6.
    Raj C, Tokuda K, Ohsaka T (2001) Bioelectrochemistry 53:183–191CrossRefGoogle Scholar
  7. 7.
    Raj C, Ohsaka T (2001) J Electroanal Chem 496:44–49CrossRefGoogle Scholar
  8. 8.
    Ciszewski A, Milczarek G (1999) Anal Chem 71:1055–1061CrossRefGoogle Scholar
  9. 9.
    Mo J, Ogorevc B (2001) Anal Chem 73:1196–1202CrossRefGoogle Scholar
  10. 10.
    Iijima S (1991) Nature (London) 354:56–58CrossRefGoogle Scholar
  11. 11.
    Kuznetsova A, Mawhinney D, Naumenko V, Yates Jr J, Liu J, Smalley R (2000) Chem Phys Lett 321:292–296CrossRefGoogle Scholar
  12. 12.
    Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Analyst 127:653–658CrossRefGoogle Scholar
  13. 13.
    Zhang P, Wu F, Zhao G, Wei X (2005) Bioelectrochemistry 67:109-114CrossRefGoogle Scholar
  14. 14.
    Ly S (2006) Bioelectrochemistry 68:227–231CrossRefGoogle Scholar
  15. 15.
    Zhang M, Gong K, Zhang H, Mao L (2005) Biosensors Bioelectron 20:1270–1276CrossRefGoogle Scholar
  16. 16.
    Hoa D, Suresh Kumar T, Punekar N, Srinivasa R, Lal R, Contractor A (1992) Anal Chem 64:2645–2646CrossRefGoogle Scholar
  17. 17.
    Sangodkar H, Sukeerthi S, Srinivasa R, Lal R, Contractor A (1996) Anal Chem 68:779–783CrossRefGoogle Scholar
  18. 18.
    Qu F, Yang M, Jiang J, Shen G, Yu R (2005) Anal Biochem 344:108–114CrossRefGoogle Scholar
  19. 19.
    Li G, Fang H, Chen H (1994) Chemical Research and Application, China, 6:7–12Google Scholar
  20. 20.
    Rekharsky M, Inoue Y (1998) Chem Rev 98:1875–1917CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Wang N, Zhan W, Xie F, Chen X (2003) Chinese Journal of Spectroscopy Laboratory 20:749–752Google Scholar
  22. 22.
    Wang Z, Wang Y, Luo G (2002) Analyst 127:1353–1358CrossRefGoogle Scholar
  23. 23.
    Wang G, Liu X, Yu B, Luo G (2004) J Electroanal Chem 576:227–231CrossRefGoogle Scholar
  24. 24.
    Wang Z, Xiao S, Chen Y (2006) J Electroanal Chem 589:237–242CrossRefGoogle Scholar
  25. 25.
    He J, Yang Y, Yang X, Liu Y, Liu Z, Shen G, Yu R (2006) Sensors Actuators B 114:94–100CrossRefGoogle Scholar
  26. 26.
    Bard A, Faulkner L (1980) (eds) Electrochemical methods. Wiley, New YorkGoogle Scholar
  27. 27.
    Murray R (1984) (eds) Electroanalytical chemistry. Marcel Dekker, New York, 13:191–368Google Scholar
  28. 28.
    Adams R (1969) J Pharm Sci 58:1171–1184CrossRefGoogle Scholar
  29. 29.
    Malem F, Mandler D (1993) Anal Chem 65:37–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical, Biological Sensing Technologies and ChemometricsHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations