Analytical and Bioanalytical Chemistry

, Volume 386, Issue 7–8, pp 2087–2094 | Cite as

Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin

Original Paper


A simple, sensitive, and reliable method based on a combination of multi-walled carbon nanotubes with incorporated β-cyclodextrin (β-CD-MWNTs) and a polyaniline (PANI) film-modified glassy-carbon (GC) electrode has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The PANI film had good anti-interference properties and long-term stability, because of the permselective and protective properties of the conducting redox polymer film. The acid-treated MWNTs with carboxylic acid functional groups promoted the electron-transfer reaction of DA and inhibited the voltammetric response of AA. Sensitive detection of DA was further improved by the preconcentration effect of formation of a supramolecular complex between β-CD and DA. The analytical response of the β-CD-MWNTs/PANI film to the electrochemical behavior of DA was, therefore, better than that of a MWNTs/PANI film, a PANI film, or a bare glassy-carbon (GC) electrode. Under the conditions chosen a linear calibration plot was obtained in the range 1.0 × 10−7–1.0 × 10−3 mol L−1 and the detection limit was 1.2 × 10−8 mol L−1. Interference from AA was effectively eliminated and the sensitivity, selectivity, stability, and reproducibility of the electrodes was excellent for determination of DA.


Dopamine β-Cyclodextrin Multi-walled carbon nanotubes Polyaniline 



This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP).


  1. 1.
    Wightman R, Amatorh C, Engstrom R, Hale P, Kristensen E, Kubr W, May L (1988) Neuroscience 25:513–523CrossRefGoogle Scholar
  2. 2.
    Wightman R, May L, Michael A (1988) Anal Chem 60:769A–770AGoogle Scholar
  3. 3.
    Adams R (1976) Anal Chem 48:1128A–1137ACrossRefGoogle Scholar
  4. 4.
    Kawagoe K, Wightman R (1994) Talanta 41:865–874CrossRefGoogle Scholar
  5. 5.
    Raj C, Okajima T, Ohsaka T (2003) J Electroanal Chem 543:127–133CrossRefGoogle Scholar
  6. 6.
    Raj C, Tokuda K, Ohsaka T (2001) Bioelectrochemistry 53:183–191CrossRefGoogle Scholar
  7. 7.
    Raj C, Ohsaka T (2001) J Electroanal Chem 496:44–49CrossRefGoogle Scholar
  8. 8.
    Ciszewski A, Milczarek G (1999) Anal Chem 71:1055–1061CrossRefGoogle Scholar
  9. 9.
    Mo J, Ogorevc B (2001) Anal Chem 73:1196–1202CrossRefGoogle Scholar
  10. 10.
    Iijima S (1991) Nature (London) 354:56–58CrossRefGoogle Scholar
  11. 11.
    Kuznetsova A, Mawhinney D, Naumenko V, Yates Jr J, Liu J, Smalley R (2000) Chem Phys Lett 321:292–296CrossRefGoogle Scholar
  12. 12.
    Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Analyst 127:653–658CrossRefGoogle Scholar
  13. 13.
    Zhang P, Wu F, Zhao G, Wei X (2005) Bioelectrochemistry 67:109-114CrossRefGoogle Scholar
  14. 14.
    Ly S (2006) Bioelectrochemistry 68:227–231CrossRefGoogle Scholar
  15. 15.
    Zhang M, Gong K, Zhang H, Mao L (2005) Biosensors Bioelectron 20:1270–1276CrossRefGoogle Scholar
  16. 16.
    Hoa D, Suresh Kumar T, Punekar N, Srinivasa R, Lal R, Contractor A (1992) Anal Chem 64:2645–2646CrossRefGoogle Scholar
  17. 17.
    Sangodkar H, Sukeerthi S, Srinivasa R, Lal R, Contractor A (1996) Anal Chem 68:779–783CrossRefGoogle Scholar
  18. 18.
    Qu F, Yang M, Jiang J, Shen G, Yu R (2005) Anal Biochem 344:108–114CrossRefGoogle Scholar
  19. 19.
    Li G, Fang H, Chen H (1994) Chemical Research and Application, China, 6:7–12Google Scholar
  20. 20.
    Rekharsky M, Inoue Y (1998) Chem Rev 98:1875–1917CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Wang N, Zhan W, Xie F, Chen X (2003) Chinese Journal of Spectroscopy Laboratory 20:749–752Google Scholar
  22. 22.
    Wang Z, Wang Y, Luo G (2002) Analyst 127:1353–1358CrossRefGoogle Scholar
  23. 23.
    Wang G, Liu X, Yu B, Luo G (2004) J Electroanal Chem 576:227–231CrossRefGoogle Scholar
  24. 24.
    Wang Z, Xiao S, Chen Y (2006) J Electroanal Chem 589:237–242CrossRefGoogle Scholar
  25. 25.
    He J, Yang Y, Yang X, Liu Y, Liu Z, Shen G, Yu R (2006) Sensors Actuators B 114:94–100CrossRefGoogle Scholar
  26. 26.
    Bard A, Faulkner L (1980) (eds) Electrochemical methods. Wiley, New YorkGoogle Scholar
  27. 27.
    Murray R (1984) (eds) Electroanalytical chemistry. Marcel Dekker, New York, 13:191–368Google Scholar
  28. 28.
    Adams R (1969) J Pharm Sci 58:1171–1184CrossRefGoogle Scholar
  29. 29.
    Malem F, Mandler D (1993) Anal Chem 65:37–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical, Biological Sensing Technologies and ChemometricsHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations